On equivalence between Takagi-Sugeno-Kang fuzzy systems with triangular membership functions and Neural Networks with ReLU activation in two or more dimensions

Authors

  • Barnabas Bede Department of Mathematics, DigiPen Institute of Technology, Redmond, WA, USA
  • Vladik Kreinovich Department of Computer Science, University of Texas at El Paso, El Paso, Tx, USA
  • Peter Toth Department of Computer Science, DigiPen Institute of Technology, Redmond, WA, USA

DOI:

https://doi.org/10.15837/ijccc.2025.4.7127

Keywords:

fuzzy sets, fuzzy systems, neural networks, ReLU activation, Takagi-Sugeno-Kang fuzzy systems

Abstract

We prove the equivalence between Takagi-Sugeno-Kang (TSK) fuzzy systems and neural networks with ReLU activation function in two or more dimensions. The TSK fuzzy systems considered will have tetrahedral membership functions for their antecedents and singleton outputs. We show an example of a fuzzy system that is locally equivalent to a neural network based on the proposed method, and we discuss the potential to provide a local analysis to explain the decision process of neural networks.

References

Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic. Springer (2013) https://doi.org/10.1007/978-3-642-35221-8

Bede, B., Kreinovich, V., Toth, P.: Equivalence between 1-d takagi-sugeno fuzzy systems with triangular membership functions and neural networks with relu activation. In: North American Fuzzy Information Processing Society Annual Conference. pp. 44-56. Springer (2023) https://doi.org/10.1007/978-3-031-46778-3_5

Bede, B., Kreinovich, V., Toth, P.: Equivalence between tsk fuzzy systems with triangular membership functions and neural networks with relu activation on the real line. In: North American Fuzzy Information Processing Society Annual Conference. Springer (2024) https://doi.org/10.1007/978-3-031-46778-3_5

Bishop, C.M.: Neural networks and their applications. Review of scientific instruments 65(6), 1803-1832 (1994) https://doi.org/10.1063/1.1144830

Cao, H., Tan, C., Gao, Z., Xu, Y., Chen, G., Heng, P.A., Li, S.Z.: A survey on generative diffusion models. IEEE Transactions on Knowledge and Data Engineering (2024) https://doi.org/10.1109/TKDE.2024.3361474

Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)

Jang, J.S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23(3), 665-685 (1993). https://doi.org/10.1109/21.256541 https://doi.org/10.1109/21.256541

Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies 7(1), 1-13 (1975) https://doi.org/10.1016/S0020-7373(75)80002-2

Mencar, C., Alonso, J.M.: Paving the way to explainable artificial intelligence with fuzzy modeling: tutorial. In: Fuzzy Logic and Applications: 12th International Workshop, WILF 2018, Genoa, Italy, September 6-7, 2018, Revised Selected Papers. pp. 215-227. Springer (2019) https://doi.org/10.1007/978-3-030-12544-8_17

Mundhenk, T.N., Chen, B.Y., Friedland, G.: Efficient saliency maps for explainable ai. arXiv preprint arXiv:1911.11293 (2019)

Oh, S.J., Schiele, B., Fritz, M.: Towards reverse-engineering black-box neural networks. Explainable AI: interpreting, explaining and visualizing deep learning pp. 121-144 (2019) https://doi.org/10.1007/978-3-030-28954-6_7

Sugeno, M., Kang, G.: Structure identification of fuzzy model. Fuzzy sets and systems 28(1), 15-33 (1988) https://doi.org/10.1016/0165-0114(88)90113-3

Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., Zhu, J.: Explainable ai: A brief survey on history, research areas, approaches and challenges. In: Natural Language Processing and Chinese Computing: 8th CCF International Conference, NLPCC 2019, Dunhuang, China, October 9-14, 2019, Proceedings, Part II 8. pp. 563-574. Springer (2019) https://doi.org/10.1007/978-3-030-32236-6_51

Zadeh, L.A.: Fuzzy sets. Information and control 8(3), 338-353 (1965) https://doi.org/10.1016/S0019-9958(65)90241-X

Zámečiková, H., Perfilieva, I., Kosheleva, O., Kreinovich, V.: A natural extension of f-transform to triangular and triangulated domains necessitates the use of triangular membership functions. Proceedings of the 13th Conference of the European Society for Fuzzy Logic and Technology EUSFLAT, Riga, Latvia, July 21-25 (2025)

Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., et al.: A survey of large language models. arXiv preprint arXiv:2303.18223 (2023)

Additional Files

Published

2025-07-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.