Implementation of the Maintenance and Repair System Using the Ant Colony Algorithm
DOI:
https://doi.org/10.15837/ijccc.2025.4.6888Keywords:
Maintenance and repairs problem, Repair and maintenance team, preventive maintenance (PM), Ant colony optimization (ACO)Abstract
In this research, the issue of maintenance and repairs for machines is addressed by considering the skills of the maintenance and repair team, as well as the varying repair times for different machines and devices. The goal is to achieve a balanced workload for repairmen based on their skills and experience. In order to investigate the efficiency of the proposed algorithms, two sets including small dimensions with 8 problems and medium to large dimensions with 12 problems have been produced. Also, in this research two approaches have been utilized to tackle this problem. The first is a mixed integer programming model for small dimensions, but its limitations in solving medium to larger problems make the use of meta-heuristic algorithms necessary, utilizes an ant colony optimization (ACO) algorithm to solve the model for practical scales. Also, in order to compare which algorithm has a better efficiency for evaluation, the ACO and GA algorithm have been used. Computational results have demonstrated the superiority of the ant algorithm over other heuristic algorithms in solving real-sized problems. This approach has been successfully implemented in the repair and maintenance department of Khosroniko Plast Production Company.
References
Swanson, L. (2001). Linking maintenance strategies to performance. International Journal Production Economics, Vol: 70, No:3, pp: 237 – 244. https://doi.org/10.1016/S0925-5273(00)00067-0.
Vilutiene, T.; Malinauskas, P. (2005). The analysis of the influence of external environment factors on the efficiency of maintenance contractors activities. Technological and Economic Development of Economy, 11(1), 50-58. https://doi.org/10.3846/13928619.2005.9637682
Basri, E.I.; Abdul Razak, I.H.; Ab-Samat, H.; Kamaruddin, S. (2017a), Preventive maintenance (PM) planning: a review, Journal of Quality in Maintenance Engineering, Vol. 23 No. 2, pp. 114-143. https://doi.org/10.1108/JQME-04-2016-0014
Ismail, A. R.; Ismail, R.; Zulkifli, R.; Makhtar, N. K.; Deros, B. M. (2009). A study on implementation of Preventive Maintenance programme at Malaysia Palm Oil Mill. European Journal Scientific Research, Vol:9, No:1, pp: 126 – 135.
Basri E.I.; AB-Samat, H. and Kamaruddin, S. (2017b). A case study of grouping machines based on failure components planning model, International Journal of Industrial and Systems Engineering, Vol: 18, No: 1, pp. 31-50. https://doi.org/10.1504/IJISE.2014.064338.
Frigura-Iliasa, M.; Simo, A.; Dzitac, S.; Frigura-Iliasa, F.M.; Baloi, F.I. (2021). Fuzzy-Logic Based Diagnosis for High Voltage Equipment Predictive Maintenance. In: Dzitac, I., Dzitac, S., Filip, F., Kacprzyk, J.; Manolescu, MJ.; Oros, H. (eds) Intelligent Methods in Computing, Communications and Control. ICCCC 2020. Advances in Intelligent Systems and Computing, vol 1243. Springer, Cham. https://doi.org/10.1007/978-3-030-53651-021 .
Reichelt, B. (2006). Maintenance strategy for municipal buildings from the viewpoint of facility management. Technological and Economic Development of Economy,12(3),236-245. https://doi.org/10.3846/13928619.2006.9637747.
Brundage, M. P.; Hodkiewicz, M.; Morris, K.C., Arinez, J.; Ameri, F.; Ni, J. (2019). Where do we start? Guidance for technology implementation in maintenance management for manufacturing. Proceedings of the ASME 2019 International Manufacturing Science and Engineering Conference, MSEC 2019. https://doi.org/10.1115/MSEC2019-2921.
Pinciroli, L.; Baraldi, P.; Zio, E. (2023). Maintenance optimization in industry 4.0, Reliability Engineering & System Safety, Volume 234, 2023, 109204, https://doi.org/10.1016/j.ress.2023.109204.
Seiti, H.; Tagipour, R.; Hafezalkotob, Asgari, F. (2017). Maintenance strategy selection with risky evaluations using RAHP.WIELY. https://doi:10.1002/mcda.1618.
Kheradranjbar, M.; Mohammadi, M.; Rafiee, S. (2022). Appropriate building repair and maintenance strategies using multi-criteria decision-making analysis – a Delphi study. Acta Structilia, Vol: 29, No: 1, pp: 86-111, Published by the UFS.http://journals.ufs.ac.za/index.php/as. https://doi.org/10.18820/24150487/as29i1.4.
Waeyenbergh, G.; Pintelon, L. (2002) A framework for maintenance concept development. International. Journal of Production Economics, Vol: 77, No: 3, pp: 299 – 313.https://doi.org/ 10.1016/S0925-5273(01)00156-6.
Werbińska-Wojciechowska, S.; Winiarska, K. (2023). Maintenance Performance in the Age of Industry 4.0: A Bibliometric Performance Analysis and a Systematic Literature Review" Sensors 23, no. 3: 1409. https://doi.org/10.3390/s23031409.
Azadeh, A.; Abdol-hosseinzadeh, S. (2016). An integrated fuzzy analytic hierarchy process and fuzzy multiple-criteria decision-making simulation approach for maintenance policy selection. SIMULATION, Vol:92, No: 1, pp:3–18. https://doi.org/10.1177/0037549715616686.
Simard, S. R.; Gamache, M.; Doyon-Poulin, P. (2023). Current Practices for Preventive Maintenance and Expectations for Predictive Maintenance in East-Canadian Mines. Mining, Vol: 3, pp:26–53. https://doi.org/10.3390/.
Ogunfowora, O.; Najjaran, H. (2024). Reinforcement and Deep Reinforcement Learning-based Solutions for Machine Maintenance Planning, Scheduling Policies, and Optimization. Journal of Manufacturing Systems, Vol: 70, pp: 244-263. https://doi.org/10.1016/j.jmsy.2023.07.014.
Parida, A.; Kumar, U.; Galar, D.; Stenstrom, C. (2015). Performance measurement and management for maintenance: a literature review. Journal of Quality in Maintenance Engineering, Vol:21, No:1, p:2-33. https://doi.org/10.1108/JQME-10-2013-0067.
Nakajima, S. (1988). Introduction to TPM: Total Productive Maintenance, Productivity Press, https://books.google.ie/books?id=XKc28H3JeUUC.
Ginevičius, R.; Andruškevičius, A. (2004). Modelling maintenance costs of buildings under warranty. Technological and Economic Development of Economy, 10(1), 22-25. https://doi.org/10.3846/13928619.2004.9637648.
Khan, M.; Darrab, I. (2010). Development of analytical relation between maintenance, quality and productivity.Journal of Quality in Maintenance Engineering, Vol:16, No:.4, pp:341 – 353. https://doi.org/10.1108/13552511011084508.
Karkauskas, R.; Nagevičius, J. (2007). Optimisation of steel frame considering inelastic strains and maintenance requirements. Technological and Economic Development of Economy, 13(1), 32-40. https://doi.org/10.3846/13928619.2007.9637773.
Muchiri, P.; Pintelon, L.; Gelders, L. (2011). Development of maintenance function performance measurement framework indicators. International Journal of Production Economics, Vol: 131, No: 1, pp: 295-302. https://doi.org/10.1016/j.ijpe.2010.04.039.
Ahmed, S.; Hassan, M.; Taha, Z. (2005). TPM Can Go Beyond Maintenance – Excerpt from A Case Implementation. Journal of Quality in Maintenance Engineering, Vol:11 No:1, pp. 19-42. https://doi.org/10.1108/13552510510589352.
Basri E.I.; AB-Samat, H.; Kamaruddin, S. (2017b). A case study of grouping machines based on failure components planning model, International Journal of Industrial and Systems Engineering, Vol: 18, No: 1, pp. 31-50. https://doi.org/10.1504/IJISE.2014.064338.
Duffuaa, S.; Al-Sultan, K. (1997). Mathematical programming approaches for the management of maintenance planning and control. Journal of Quality in Maintenance Engineering, Vol.3 No.3, pp. 163 – 176. https://doi.org/10.1108/13552519710177943.
Dzitac, S.; Felea, I.; Dzitac, I.; Vesselenyi, T. (2008). Neuro-Fuzzy Modeling of Event Prediction using Time Intervals as Independent Variables. Zadeh L.A., Tufi¸s D., Filip F.G., Dzitac I.(Eds.), From Natural Language to Soft Computing: New Paradigms in Artificial Intelligence, Editing House of Romanian Academy, Bucharest, ISBN 978-973-27-1678-6, 2008, pp. 84-99.
Cârlan, M.; Babau, V.; Lolea, M.; Cret, P.; Dzitac, S. (2011). Optimal duration evaluation of preventive maintenance at a power equipment based on costs: approaches in ERP maintenance strategy. Journal of Sustainable Energy, 2011, v. 2, n. 4, p. 1.
Simo, A.; Dzitac, S.; Frigura-Iliasa, F. M.; Frigura-Iliasa, M.; Pocola, A.; Ionescu, V. M. (2022). High Voltage Device Design and Predictive Maintenance Software based on Fuzzy-Logi. Procedia Computer Science, Volume 214, 2022 Pages 1389-1395. https://doi.org/10.1016/j.procs.2022.11.321.
Ahuja, I.P.S.; Khamba, J.S. (2008). Total productive maintenance: literature review and directions, International. Journal of Quality & Reliability Management, Vol: 25, No: 7, pp:709-756. https://doi.org/10.1108/02656710810890890.
Jasiulewicz-Kaczmarek, M. (2016). SWOT analysis for Planned Maintenance strategy – a case study. IFAC-Papers Online, Vol: 49, No:12, pp:674–679. https://doi.org/10.1016/j.ifacol.2016.07.788 .
Yare, Y.; Venayagamorthy., G.K. (2008). A Differential Evolution Approach to Optimal Generator Maintenance Scheduling of the Nigerian Power System. Power and Energy Society General Meeting—Conversion and De-livery of Electrical Energy in the 21st Century, Pittsburg, 20-24, pp. 1-8. doi:10.1109/PES.2008.4596664.
Guariente, P., Antoniolli, I.; Ferreira, L.P., Pereira, T., Silva, F.J.G. (2017). Implementing autonomous maintenance in an automotive components manufacturer. Procedia Manuf, Vol :13, pp: 1128–34. https://doi.org/10.1016/j.promfg.2017.09.174.
Martins, L.; Silva, F. J. G.; Pimentel, C.; Casais, R.B.; Campilho, R. D. S. G. (2021). Improving Preventive Maintenance Management in an Energy Solutions Company. Procedia Manufacturing, Vol:51, pp:1551–1558. https://doi.org/ 10.1016/j.promfg.2020.10.216.
Badiea, A. M.; Wael, B. A.; Adel, A. A. (2023). Implementing total productive maintenance in Yemeni company for industry and commerce (ycic): case study. European Journal of Applied Sciences, Vol: 11, No: 2. https:/doi.org/10.14738/aivp.112.12966.
Mishra, R.P.; Anand, G.; Kodali, R. (2008). A SWOT analysis of total productive maintenance frame works‖. International Journal Management Practices, Vol.3 (1), pp.51-81. https://doi.org/ 10.1108/JQME-01-2015-0002.
Zhao, L.; Li, F.; Sun., D.; Zhao, Z. (2024). An improved ant colony algorithm based on Q-Learning for route planning of autonomous vehicle. International Journal of Computers Communications & Control, 19(3), 5382, 2024. https://doi.org/10.15837/ijccc.2024.3.5382.
Mao, J. (2024). Optimizing Enterprise Marketing Project Portfolios Using Fuzzy Ant Colony Optimization. International Journal of Computers Communications & Control, 19(3), 6458. https://doi.org/10.15837/ijccc.2024.3.6458
Cavazzuti, M. (2023). Optimization methods: from theory to design. Edition: 1st. Publisher: Springer. ISBN: 9783642311864.
Sadrehaghighi, I. (2022). Optimization Problem. CFDO pen Series Patch 2.60. https://doi.org/10.13140/RG.2.2.10973.69605/1.
Allen, F.; Karjalainen, R. (1999). Using genetic algorithms to find technical trading rules. Economics, 51(2), 245–271. https://doi.org/10.1016/S0304-405X(98)00052-X.
Iba, H.; Sasaki, T. (1999). Using genetic programming to predict financial data. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Vol.1, pp: 244–251. IEEE. https://doi.org/10.1109/CEC.1999.781932.
Bris, R.; Châtelet, E.; Yalaoui, F. (2003). New method to minimize the preventive maintenance cost of series–parallel systems. Reliability engineering & system safety, Vol. 82, No. 3, pp. 247-255. https://doi.org/10.1016/S0951-8320(03)00166-2.
Tsai, T.-T.; Wang, K.-S.; Teng, H.-Y. (2001). Optimizing preventive maintenance for mechanical components using genetic algorithms. Reliability engineering & system safety, Vol. 74, No. 1, pp.89-97.
Usher, J.S.; Kamal, A.H.; Syed, W.H. (1998). Cost optimal preventive maintenance and replacement scheduling. IIE transactions, Vol. 30, No. 12, pp. 1121-1128. https://doi.org/10.1023/A:1007524100829.
Javanmard, H.; Abd al-Wahhab, K. (2016). Optimizing the preventive maintenance scheduling by genetic algorithm based on cost and reliability in National Iranian Drilling Company. International Journal of Industrial Engineering, Vol: 12, pp:509–516. https.//doi.org/ 10.1007/s40092-016- 0155-9.
Choulaei, M.; Bouzid, A.-H. (2021). Stress analysis of bolted flange joints with different shell connections, in Proceeding of, American Society of Mechanical Engineers, pp. V012T12A029.
Choulaei, M. (2022). Stress analysis of bolted flange joints with different shell connections. Thesis, École de technologie supérieure.
Kumhar, S.; Kumar, M. (2016). Generator maintenance scheduling of power system using hybrid. International Research Journal of Engineering and Technology, Vol: 3, pp: 418-423.
Pătrascu, A.; Bucur, C.; Tănăsescu, A.; Toader F.A. (2024). Proposal of a Machine Learning Predictive Maintenance Solution Architecture, International Journal of Computers Communications & Control, 19(3), 6499.https://doi.org/10.15837/ijccc.2024.3.6499.
Dorigo, M.; Stützle, T. (2003). The ant colony optimization metaheuristic: Algorithms, applications, and advances. Metaheuristics Handbook, F. Glover and G. Kochenberger (Eds.). International Series in Operations Research and Management Science.
Dorigo, M.; Gambardella, L.M. (1997) Ant Colony System: A Cooperative Learning Approach to the Travelling Salesman Problem. IEEE Transactions on Evolutionary Computation, 1, 53-66. http://dx.doi.org/10.1109/4235.585892.
Jahromi, A.E.; Yazdeli, R.I. (2015). A mixed integer-programming model for periodic routing of special vessels in offshore oil industry. Intonational journal Industrial Engineering, Vol. 22, No. 5, pp: 524–528.
Mrad, M.; Alfares, H.K. (2016). Optimum multi-period, multi-plant, and multi-supplier production planning for multi-grade petrochemicals. International Journal of Industrial. Engineering, Vol:23, No: 6, pp: 399–411.
Noh, D.J.; Kim, B.I.; Cho, H.; Park, J.S. (2016). A multi-leg load-planning algorithm for a highspeed freight train. Intonational journal Industrial Engineering, Vol: 23, No: 3, pp: 183–194. https://oasis.postech.ac.kr/handle/2014.oak/38240.
Mixed integer programming formulations for single-machine and parallel-machine scheduling problems. IEEE ACCESS, Vol: 7. Digital Object Identifier 10.1109/ACCESS.2019.2947685.
Bertsimas, D.; Tsitsi Klis, J.N. (1997). Introduction to Linear Optimization. Athena Scientific, Belmont MA.
Floudas, C. A. (1995). Nonlinear and Mixed-Integer Programming. Fundamentals and Applications Oxford University Press.
Richards, A.; How, J. (2005). Mixed-integer Programming for Control. American Control Conference June 8-10, 2005. Portland, OR, USA.
Nemati, A.R., Mahmoodabadi, M. J.(2016). A novel adaptive genetic algorithm for global optimization of mathematical test functions and real-world problems. Engineering Science and Technology, and International Journal. http://dx.doi.org/10.1016/j.jestch.2016.10.012
Dorigo, M. (1992). Optimization, Learning and Natural Algorithms [in Italian]. PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan.
Dorigo, M., Stützle, T. (2004). Ant colony optimization. The MIT Press. https://doi.org/10.7551/mitpress/1290.001.0001
Dorigo, M.; Gambardella, L.M. (1997). Ant Colonies for the traveling salesman problem. Bio system, Vol: 43, No, 4, pp:73-81.
Dorigo, M.; Di Caro, G. (1999b). The ant colony optimization meta-heuristic. In D. Corne, M. Dorigo, F. Glover (Eds.), New Ideas
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 Mohammad reza KOMARI ALAEI, Reza ROSTAMZADEH, Mehrdad KOULAB, Zenonas TURSKIS, Jonas ŠAPARAUSKAS, Mahdi ABDSHARAFAT

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.