A Time Series-based Data Modelling Approach for Natural Gas Pipeline Intelligent Management System

Authors

  • Chunxiao Mei Hebei Gas Co., Ltd, Shijiazhuang, China
  • Shengxin   Lu Hebei Gas Co., Ltd. Shijiazhuang, China
  • Zhiyong Song Hebei Gas Co., Ltd, Shijiazhuang, China
  • Hao Li Hebei Gas Co., Ltd, Shijiazhuang, China
  • Zhihao Feng Hebei Gas Co., Ltd, Shijiazhuang, China
  • Jiankun Liu Hebei Gas Co., Ltd, Shijiazhuang, China

DOI:

https://doi.org/10.15837/ijccc.2025.4.6813

Keywords:

Time series analysis, Gas pipeline, Long short-term memory network, Attention mechanism, Data management

Abstract

The study proposes an integrated method for intelligent management and risk prediction of natural gas pipelines using time series analysis. The method combines k-nearest neighbor imputation for data preprocessing, long short-term memory networks, and an attention mechanism for temporal data prediction to introduce a new intelligent data management model. The research method is tested by testing real pipeline data from eight scenarios in the gas pipeline operation monitoring dataset and the gas pipeline failure dataset. The experimental results demonstrated a notable enhancement in performance relative to existing methods, with data coverage reaching up to 92%, a classification error rate of 5%, an accuracy in risk prediction of 95%, and a processing time of 12.7 seconds. The framework provides a comprehensive solution for improving the safety, efficiency, and reliability of natural gas pipeline operations through advanced data analytics.

References

Orkomi A A, Bora K M. Traffic Induced Noise Pollution Prediction Using Traffic Noise Model (Tnm) In Rasht, Iran. Environmental Engineering & Management Journal (EEMJ), 2021, 20(9): 1415-1423. https://doi.org/10.30638/eemj.2021.131

Tang M, Cao J, Fan Z, Zhang D, Pandelic Ionut. A Data-Driven Assessment Model for Metaverse Maturity. International Journal Of Computers Communications & Control, 2024, 19(4): 288-300. https://doi.org/10.15837/ijccc.2024.4.6498

Raska P, Ulrych Z, Baloun J. Using Adaptive Neural Networks For Optimising Discrete Event Simulation. International Journal of Simulation Modelling (IJSIMM), 2024, 23(2): 227-238. https://doi.org/10.2507/IJSIMM23-2-678

Fang X, Wang Y. Modelling And Simulation Of Purchasing Decision By Data-Driven Demand. International Journal of Simulation Modelling (IJSIMM), 2024, 23(2): 371-381. https://doi.org/10.2507/IJSIMM23-2-CO10

Wang S L, Zhang X. Optimization Strategies And Simulation Of Integrated Management In Supply Chains. International Journal of Simulation Modelling (IJSIMM), 2024, 23(3): 543-554. https://doi.org/10.2507/IJSIMM23-3-CO15

Kim B C, Kim H, Moon Y, Lee G, Wun, D. End-to-end digitization of image format piping and instrumentation diagrams at an industrially applicable level. Journal of Computational Design and Engineering, 2022, 9(4): 1298-1326. https://doi.org/10.1093/jcde/qwac056

Odili P O, Daudu C D, Adefemi A, Ekemezie I O , Usiagu G S. Integrating advanced technologies in corrosion and inspection management for oil and gas operations. Engineering Science & Technology Journal, 2024, 5(2): 597-611. https://doi.org/10.51594/estj.v5i2.835

Khan U, Pao W, Sallih N, Hassan F. Flow Regime Identification in Gas-Liquid Two-Phase Flow in Horizontal Pipe by Deep Learning. Journal of Advanced Research in Applied Sciences and Engineering Technology, 2022, 27(1): 86-91. https://doi.org/10.37934/araset.27.1.8691

Ma T, Hu C, Wang L, Ma L, Mao Z, Xuan H. An intelligent feature recognition method of natural gas pipelines based on shapelet and blending fusion model. Measurement Science and Technology, 2023, 35(1): 15004-15009. https://doi.org/10.1088/1361-6501/acfa17

Huang Y, Peng H, Wen L, Xing T. Using digital technologies to plan and manage the pipelines network in city. IET Smart Cities, 2023, 5(2): 95-110. https://doi.org/10.1049/smc2.12054

Kumar R, Kumar P, Kumar Y. Multi-step time series analysis and forecasting strategy using ARIMA and evolutionary algorithms. International Journal of Information Technology, 2022, 14(1): 359-373. https://doi.org/10.1007/s41870-021-00741-8

Hosseini S A, Masoudi H, Sajadiye S M, mEhdizadeh S A. Nitrogen estimation in sugarcane fields from aerial digital images using artificial neural network. Environmental Engineering & Management Journal (EEMJ), 2021, 20(5): 713-723. https://doi.org/10.30638/eemj.2021.068

Sadeghi J, Oghabi M, Sarvari H, Sabeti MS, Kashefi H, Chan D. Identification and prioritization of seismic risks in urban worn-out textures using fuzzy delphi method. Environmental engineering and management journal, 2021, 20(6): 1035-1046. https://doi.org/10.30638/eemj.2021.096

Ahmed S, Nielsen I E, Tripathi A, Siddiqui S, Ramachandran R, Rasool G. Transformers in timeseries analysis: A tutorial. Circuits, Systems, and Signal Processing, 2023, 42(12): 7433-7466. https://doi.org/10.1007/s00034-023-02454-8

Singh D, Alam Q. Is tourism expansion the key to economic growth in India? An aggregate-level time series analysis. Annals of Tourism Research Empirical Insights, 2024, 5(2): 100126-100131. https://doi.org/10.1016/j.annale.2024.100126

Ashry I, Mao Y, Wang B. A review of distributed fiber-optic sensing in the oil and gas industry. Journal of Lightwave Technology, 2022, 40(5): 1407-1431. https://doi.org/10.1109/JLT.2021.3135653

Yerdelen C, Abdelkader M. Long-term trend analysis of annual precipitation for short periodicities. Environmental Engineering & Management Journal (EEMJ), 2021, 20(11): 1721-1729. https://doi.org/10.30638/eemj.2021.161

Dorais S. Time series analysis in preventive intervention research: A step-by-step guide. Journal of Counseling & Development, 2024, 102(2): 239-250. https://doi.org/10.1002/jcad.12508

Ghashghaie M, Eslami H, Ostad-Ali-Askari K. Applications of time series analysis to investigate components of Madiyan-rood river water quality. Applied Water Science, 2022, 12(8): 202. https://doi.org/10.1007/s13201-022-01693-5

Hosseini S, Vaferi B. Determination of methanol loss due to vaporization in gas hydrate inhibition process using intelligent connectionist paradigms. Arabian Journal for Science and Engineering, 2022, 47(5): 5811-5819. https://doi.org/10.1007/s13369-021-05679-4

Mahmoodi S, Najafi A A, Ghods K. A Multi-Objective Water Cycle Algorithm for the BIObjective Multi-Mode Project Resource Renting Problem. Economic Computation & Economic Cybernetics Studies & Research, 2024, 58(1): 104-119. https://doi.org/10.24818/18423264/58.1.24.07

Ferrara M, Ciano T. Improving the Interpretability of Asset Pricing Models by Explainable AI: A Machine Learning-based Approach. Economic Computation & Economic Cybernetics Studies & Research, 2024, 58(4): 5-19. https://doi.org/10.24818/18423264/58.4.24.01

Ihueze C C, Okafor C E, Obuka S N, Abdulrahman J, Onwurah U O. Integrity and cost evaluation of natural fibers/HDPE composite tailored for piping applications. Journal of Thermoplastic Composite Materials, 2023, 36(1): 372-398. https://doi.org/10.1177/08927057211010878

Tan Z, Zhang X, Xie B,Wang D, Liu B, Yu T. Fast learning optimiser for real-time optimal energy management of a grid-connected microgrid. IET Generation, Transmission & Distribution, 2022, 16(1): 2977-2987. https://doi.org/10.1049/iet-gtd.2017.1983

Velazquez-Mena A, Benitez-Perez H, Rodríguez-Martínez R C DICOMIST: An methodology for Performing Distributed Computing in Heterogeneous ad hoc Networks. International Journal of Computers Communications & Control, 2024, 19(4): 6526-6527. https://doi.org/10.15837/ijccc.2024.4.6526

Kim J S, Kang D S. A study on fire data augmentation from video/image using the similar-label and F-guessed method. Computer Science and Information Systems, 2024, 21(2): 645-661. https://doi.org/10.2298/CSIS230820011K

Hema D D, Kumar K A. Novel optimised deep learning approach for an efficient traffic state prediction based on CAE-ICCDCS-GRU model. International Journal of Bio-Inspired Computation, 2024, 23(2): 80-98. https://doi.org/10.1504/IJBIC.2024.136747

Zhang Yan, Ke Yang. ECW-EGNet: Exploring Cross-ModalWeighting and edge-guided decoder network for RGB-D salient object detection. Computer Science and Information Systems, 2024, 21(3):947-969. https://doi.org/10.2298/CSIS231206022X

Medrano Cesar L, Diego Alonso G C, Lafarga Octavio V, Cervantes J. MCClusteringSM: An approach for the Multicriteria Clustering Problem based on a Credibility Similarity Measure. Computer Science & Information Systems, 2024, 21(3): 1147-1117. https://doi.org/10.2298/CSIS230302033M

Shi Y, Xue X, Xue J, Qu Y. Fault Detection in Nuclear Power Plants using Deep Leaning based Image Classification with Imaged Time-series Data. International Journal of Computers Communications & Control, 2022, 17(1): 1-5. https://doi.org/10.15837/ijccc.2022.1.4714

Özcan G E, Karacı A, Enez K. Application of deep neural networks in modeling the capture of Ips sexdentatus in pheromone trap. Environmental Engineering & Management Journal (EEMJ), 2022, 21(1): 105-116. https://doi.org/10.30638/eemj.2022.010

Barbitoff Y A, Abasov R, Tvorogova V E, Glotov A S, Predeius A V. Systematic benchmark of state-of-the-art variant calling pipelines identifies major factors affecting accuracy of coding sequence variant discovery. BMC genomics, 2022, 23(1): 155-157. https://doi.org/10.1186/s12864-022-08365-3

Gasparin A, Lukovic S, Alippi C. Deep learning for time series forecasting: The electric load case. CAAI Transactions on Intelligence Technology, 2022, 7(1): 1-25. https://doi.org/10.1049/cit2.12060

Yang L,Wang R, Zhou Y, Liang J, Zhao K, Burleigh S C. An Analytical Framework for Disruption of Licklider Transmission Protocol in Mars Communications. IEEE Transactions on Vehicular Technology, 2022, 71(5): 5430-5444. https://doi.org/10.1109/TVT.2022.3153959

Zhang, D., et al. "Deep learning-based fault diagnosis for oil and gas pipeline networks." IEEE Transactions on Industrial Informatics, 2021, 17(8), 5605-5614. https://doi.org/10.1109/TII.2020.3034674

Rad D, Kiss C, Paraschiv N. Automated comparative predictive analysis of deception detection in convicted offenders using polygraph with random forest, support vector machine, and artificial neural network models. Studies in Informatics and Control, 2024, 33(3): 39-48. https://doi.org/10.24846/v33i3y202404

Wang, H., et al. "A survey on deep learning for time series forecasting." ACM Computing Surveys, 2023, 55(2), 1-37. https://doi.org/10.1145/3589639

Li L, Chung W. Application of Artificial Intelligence in Visual Communication of Green Urban Rural Integration Landscape Design. Ecological Chemistry and Engineering, 2024, 31(4): 583-597. https://doi.org/10.2478/eces-2024-0038

Additional Files

Published

2025-07-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.