New Meta-heuristic - Based Approach for Identification and Control of Stable and Unstable Systems

Authors

  • Mohamed Azegmout Cadi Ayyad University, Marrakech, Morocco
  • Mostafa Mjahed Royal School of Aeronautics, Marrakech, Morocco
  • Abdeljalil El Kari Cadi Ayyad University, Marrakech, Morocco
  • Hassan Ayad Cadi Ayyad University, Marrakech, Morocco

DOI:

https://doi.org/10.15837/ijccc.2023.4.5294

Keywords:

Identification, Automatic Control, Ant Colony Optimization (ACO), Invasive Weed Optimization (IWO), Cultural Algorithm (CA), Black Hole Optimization (BHA), PID, Least Squares, Reference Model

Abstract

Nowadays, the use of meta-heuristic algorithms (MAs) for tackling complicated engineering issues has shown significant promise, therefore applying MAs to optimum model parameters and PID parameters can be quite beneficial. As a result, this paper looks at the capabilities of four recently released resilient MAs in optimizing model parameters and PID parameters for various system behaviors. Hence, these four meta-heuristic algorithms are used such as Ant Colony Optimization (ACO), Cultural Algorithm (CA), Invasive Weed Optimization (IWO), and Black Hole Algorithm (BHA). The key contribution of this study is the employment of many meta-heuristics at the same time with the same objective function while taking into consideration each algorithm parameters for identification and control, then compared to traditional techniques such as Least square (LS) and Reference Model (RM). Thus, the most efficient algorithm is the one that yields the lowest cost function, has the lowest standard deviation (SD), and uses the least amount of CPU time. Regarding identification, simulation findings showed that CA algorithm has the best cost, lowest standard deviation (SD) and fewest CPU time 2.7838e-13, 7.1108e-13 and 3.1395(s), respectively. As for control system, it is shown that created intelligent-based controllers are more dependable than reference model controllers in stabilizing the behaviors of the various examined processes, with the IWO algorithm finds the best gains of PID and converges the fastest with best cost 3.2905e-10 and CPU time 48.8732(s). Moreover, ACO and BHA both failed to achieve satisfactory results in terms of accuracy and CPU time compared to others algorithms. Additionally, studies also showed that optimization methods has good performance, resilient and effective.

References

H. W. Sorenson. (1970); Least-squares estimation: from Gauss to Kalman, IEEE Spectrum, 7(7), 63-68, IEEE.

https://doi.org/10.1109/MSPEC.1970.5213471

K.J. Astrom.; B. Wittenmark. (1995); Adaptive Control, Addison-Wesley, Massachusetts, 1995.

El Gmili. N.; Mjahed. M.; El Kari. A.; Ayad. H. (2017); An Improved Particle Swarm Optimization (IPSO) Approach for Identification and Control of Stable and Unstable Systems, International Review of Automatic Control (IREACO), 10(3), 229-239, 2017.

https://doi.org/10.15866/ireaco.v10i3.11857

Siti. I.; Mjahed. M.; Ayad. H.; El Kari. A. (2018); Identification and Control of Stable and Unstable Systems by Using Genetic Algorithm Method, 2018 International Conference on Control, Automation and Diagnosis (ICCAD), IEEE.

https://doi.org/10.1109/CADIAG.2018.8751274

Fayti. M.; Mjahed. M.; Ayad. H.; El Kari. A. (2022); Differential Evolution Approach for Identification and Control of Stable and Unstable Systems, 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), 1, 218-223, 2022, IEEE.

Alireza. A.; Hamidreza. M. (2011); System identification and control using adaptive particle swarm optimization, Applied Mathematical Modelling, 35(3), 1210-1221, 2011.

https://doi.org/10.1016/j.apm.2010.08.008

Wei-Der. C. (2007); Nonlinear system identification and control using a real-coded genetic algorithm, Applied Mathematical Modelling, 31(3), 541-550, 2007.

https://doi.org/10.1016/j.apm.2005.11.024

J. G. Ziegler.; N. B. Nichols. (1993); Optimum Settings for Automatic Controllers, Journal of Dynamic Systems, Measurement and Control, 115(2B), 220-222, 1993, ASME.

https://doi.org/10.1115/1.2899060

El Hamidi. K.; Mjahed. M.; El Kari. A.; Ayad. H. (2018); Neural and Fuzzy Based Nonlinear Flight Control for an Unmanned Quadcopter, International Review of Automatic Control (IREACO), 10(3), 98-106, 2018.

https://doi.org/10.15866/ireaco.v11i3.14055

Mjahed. M. (2019); Flight control system design using neural networks, International Robotics & Automation Journal, 5(3), 96-98, 2019.

https://doi.org/10.15406/iratj.2019.05.00180

D.H. Vu.; S. Huang.; T.D. Tran.; T.Y. Vu.; V.C. Pham (2019); A Robust Adaptive Control using Fuzzy Neural Network for Robot Manipulators with Dead-Zone, International Journal of Computers Communications and Control, 14(5), 692-710, 2019.

https://doi.org/10.15837/ijccc.2019.5.3621

J. Tang.; G. Liu.; Q. Pan (2021); A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends, IEEE/CAA Journal of Automatica Sinica, 8(10), 1627-1643, IEEE, 2021.

https://doi.org/10.1109/JAS.2021.1004129

Abbas. N. H.; Sami. A. R. (2018); Tuning of PID Controllers for Quadcopter System using Cultural Exchange Imperialist Competitive Algorithm, Journal of Engineering, 24(2), 80-99, 2018.

https://doi.org/10.31026/j.eng.2018.02.06

El Gmili. N.; Mjahed. M.; El Kari. A.; Ayad. H. (2020); Particle swarm optimization based proportional-derivative parameters for unmanned tilt-rotor flight control and trajectory tracking, Automatika, 61(2), 189-206, 2020.

https://doi.org/10.1080/00051144.2019.1698191

Siti. I.; Mjahed. M.; Ayad. H.; El Kari. A. (2015); Control of a quadcopter using reference model and genetic algorithm methods, 2015 Third World Conference on Complex Systems (WCCS), 1-6, IEEE.

Mpanza. L.J.; Pedro. J.O. (2021); Optimised Tuning of a PID-Based Flight Controller for a Medium-Scale Rotorcraft, Algorithm, 14(6), 178, 2021.

https://doi.org/10.3390/a14060178

Stephen. B. J.; Emmanuel. G. D.; Afeez. A.; David. O. O.; Ban. M. K. (2022); Metaheuristic algorithms for PID controller parameters tuning: review, approaches and open problems, Heliyon, 8(5), 2405-8440, 2022.

https://doi.org/10.1016/j.heliyon.2022.e09399

Mojgan. M.; Mahdi. Y. (2019); Improved invasive weed optimization algorithm (IWO) based on chaos theory for optimal design of PID controller, Journal of Computational Design and Engineering, 6(3), 284-295, 2019.

https://doi.org/10.1016/j.jcde.2019.01.001

Ibtihal. H. I.; Hazem. I. A. (2021); Quantitative PID Controller Design using Black Hole Optimization for Ball and Beam System, Iraqi Journal of Computers, Communications, Control and Systems Engineering (IJCCCE), 21(3), 65-75, 2021.

https://doi.org/10.33103/uot.ijccce.21.3.6

Ibtissem. C.; Noureddine. L.; Pierre. B. (2012); Tuning PID Controller Using Multiobjective Ant Colony Optimization, Applied Computational Intelligence and Soft Computing, 2012.

https://doi.org/10.1155/2012/536326

Tulasichandra. S. G.; Ramana. P. (2019); Black hole optimised cascade proportional derivativeproportional integral derivative controller for frequency regulation in hybrid distributed power system, International Journal of Swarm Intelligence, 4(2), 155-174, 2019.

https://doi.org/10.1504/IJSI.2019.10025731

Sharifi. M.R.; Akbarifard. S.; Madadi. M.R; (2022); Optimization of hydropower energy generation by 14 robust evolutionary algorithms, Scientific Reports, 12, 7739 (2022).

https://doi.org/10.1038/s41598-022-11915-0

Mahfoud. S.; Derouich. A.; El Ouanjli. N.; Quynh. N.V.; Mossa. M.A. (2022); A New Hybrid Ant Colony Optimization Based PID of the Direct Torque Control for a Doubly Fed Induction Motor, World Electric Vehicle Journal, 13(5), 78, 2022.

https://doi.org/10.3390/wevj13050078

Mjahed. M. (2016); Identifications of linear systems, Reading notes, Royal School of Aeronautics, Marrakech, Morocco, 2016.

O. Pajonk. (2009); Overview of System Identification with Focus on Inverse Modeling, Institute of scientific computing, Technical University of Braunschweig, 2009.

Mjahed. M. (2014); Linear control systems, Lectures notes, Royal School of Aeronautics, Marrakech, Morocco, 2014.

Dorigo. M. (1992); Optimization, Learning and Natural Algorithms, Ph.D Thesis, Politecnico di Milano, Italian, 1992.

H. A. Varol.; Z. Bingul. (2004); A new PID tuning technique using ant algorithm, Proceedings of the 2004 American Control Conference, 3, 2154-2159, IEEE.

https://doi.org/10.23919/ACC.2004.1383780

A.R. Mehrabian.; C. Lucas. (2006); A novel numerical optimization algorithm inspired from weed colonization, Ecological Informatics, 1(4), 355-366.

https://doi.org/10.1016/j.ecoinf.2006.07.003

R.G. Reynolds. (1994); An introduction to cultural algorithms, Proceedings of the Third Annual Conference on Evolutionary Programming, 131-139.

M. Khalid.; Q. Luo.; H. Duan. (2012); A cultural algorithm based particle swarm optimization approach to linear brushless DC motor PID controller, Scientific Research and Essays, 7(3), 318-326, 2012.

A. Maheri.; S. Jalili.; Y. Hosseinzadeh.; R. Khani.; M. Miryahyavi. (2021); A comprehensive survey on cultural algorithms, Swarm and Evolutionary Computation, 62(1), 2021.

https://doi.org/10.1016/j.swevo.2021.100846

Hatamlou. A. (2013); Black hole: A new heuristic optimization approach for data clustering, Information Sciences, 222, 175-184, 2013.

https://doi.org/10.1016/j.ins.2012.08.023

Jin. Y.; Xiaoming. Y.; Sheng. Liu.; (2021); A heterogeneous guided ant colony algorithm based on space explosion and long-short memory, Applied Soft Computing, 113(B), 2021.

https://doi.org/10.1016/j.asoc.2021.107991

Additional Files

Published

2023-06-20

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.