A Neutrosophic Approach Based on TOPSIS Method to Image Segmentation


  • Guojing Xu Science and Technology on Avionics Integration Laboratory
  • Shiyu Wang Northwestern Polytechnical University
  • Tian Yang Northwestern Polytechnical University
  • Wen Jiang Northwestern Polytechnical University http://orcid.org/0000-0001-5429-2748


uncertainty, neutrosophic set, TOPSIS method, FCM, image segmentation


Neutrosophic set (NS) is a formal framework proposed recently. NS can not only describe the incomplete information in the decision-making system but also depict the uncertainty and inconsistency, so it has applied successfully in several fields such as risk assessment, fuzzy decision and image segmentation. In this paper, a new neutrosophic approach based on TOPSIS method, which can make full use of NS information, is proposed to separate the graphics. Firstly, the image is transformed into the NS domain. Then, two operations, a modified alpha-mean and the beta-enhancement operations are used to enhance image edges and to reduce uncertainty. At last, the segmentation is achieved by the TOPSIS method and the modified fuzzy c-means (FCM). Simulated images and real images are illustrated that the proposed method is more effective and accurate in image segmentation.

Author Biographies

Shiyu Wang, Northwestern Polytechnical University

School of Electronics and Information

Tian Yang, Northwestern Polytechnical University

School of Electronics and Information

Wen Jiang, Northwestern Polytechnical University

School of Electronics and Information


Ali, M.; Smarandache, F. (2017); Complex neutrosophic set, Neural Computing & Applications, 28(7), 1817-1834, 2017. https://doi.org/10.1007/s00521-015-2154-y

Ashraf, M.; Sarim, M.; Shaikh, A.B. (2017). Cellular-Cut-Interactive n-Dimensional Image Segmentation Using Cellular Automata. International Journal of Pattern Recognition & Artificial Intelligence, 2017. https://doi.org/10.1142/S0218001417540179

Bezdek, J.C.; Ehrlich, R.; Full, W. (1984). FCM: The fuzzy c-means clustering algorithm, Computers & Geosciences, 10(2-3), 191-203, 1984. https://doi.org/10.1016/0098-3004(84)90020-7

Cannon, R.L.; Dave, J.V.; Bezdek, J.C. (1986). Efficient Implementation of the Fuzzy c-Means Clustering Algorithms, IEEE Transactions on Pattern Analysis & Machine Intelligence, 8(2), 248-255, 1986. https://doi.org/10.1109/TPAMI.1986.4767778

Chen, L.; Deng, Y. (2018). A new failure mode and effects analysis model using Dempster- Shafer evidence theory and grey relational projection method, Engineering Applications of Artificial Intelligence, 76, 13-20, 2018, doi:10.1016/j.engappai.2018.08.010. https://doi.org/10.1016/j.engappai.2018.08.010

Dempster, A.P. (1967). Upper and Lower Probabilities Induced by a Multi-valued Mapping, Annals of Mathematical Statistics, 38(2),325-339, 1967. https://doi.org/10.1214/aoms/1177698950

Deng, X. (2018). Analyzing the monotonicity of belief interval based uncertainty measures in belief function theory, International Journal of Intelligent Systems, 33(9),1869-1879, 2018. https://doi.org/10.1002/int.21999

Deng, X.; Han, D.; Dezert, J.; Deng, Y.; Shyr, Y. (2016). Evidence combination from an evolutionary game theory perspective, IEEE Transactions on Cybernetics, 46(9), 2070-2082, 2016. https://doi.org/10.1109/TCYB.2015.2462352

Deng, X. Jiang, W. (2018). Dependence assessment in human reliability analysis using an evidential network approach extended by belief rules and uncertainty measures, Annals of Nuclear Energy, 117, 183-193, 2018. https://doi.org/10.1016/j.anucene.2018.03.028

Deng, X.; Jiang, W.; Wang, Z. (2019). Zero-sum polymatrix games with link uncertainty: A Dempster-Shafer theory solution, Applied Mathematics and Computation, 340, 101-112, 2019. https://doi.org/10.1016/j.amc.2018.08.032

Deng X.; Xiao, F.; Deng, Y. (2017). An improved distance-based total uncertainty measure in belief function theory, Applied Intelligence, 46(4), 898-915, 2017. https://doi.org/10.1007/s10489-016-0870-3

Deng, Y. (2012). D numbers: theory and applications, Journal of Information & Computational Science, 9(9), 2421-2428, 2012.

Dou, R.; Nan, G. (2018). Optimizing sensor network coverage and regional connectivity in industrial IoT systems, IEEE Systems Journal, 11(3), 1351-1360, 2018. https://doi.org/10.1109/JSYST.2015.2443045

Eklund, A.; Dufort, P.; Forsberg, D.; Laconte, S.M. (2013). Medical image processing on the GPU: Past, present and future, Medical Image Analysis, 17(17), 1073-1094, 2013. https://doi.org/10.1016/j.media.2013.05.008

Fei, L.; Deng, Y.; Hu, Y. (2018). DS-VIKOR: A New Multi-criteria Decision-Making Method for Supplier Selection, International Journal of Fuzzy Systems, 2018, p. 10.1007/s40815- 018-0543-y.

Greco, S.; Matarazzo, B.; Slowinski, R. (2001). Rough sets theory for multicriteria decision analysis, European Journal of Operational Research, 129(1), 1-47, 2001. https://doi.org/10.1016/S0377-2217(00)00167-3

Guo, Y.; Cheng, H.D. (2009). New neutrosophic approach to image segmentation, Pattern Recognition, 42(5), 587-595, 2009. https://doi.org/10.1016/j.patcog.2008.10.002

Guo, Y.; Sengur, A. (2015). NECM: Neutrosophic evidential c -means clustering algorithm, Neural Computing & Applications, 26(3), 561-571, 2015. https://doi.org/10.1007/s00521-014-1648-3

Guo, Y.; Sengur, A. (2013). A novel color image segmentation approach based on neutrosophic set and modified fuzzy c -means, Circuits, Systems, and Signal Processing, 32(4), 1699-1723, 2013. https://doi.org/10.1007/s00034-012-9531-x

Han, Y.; Deng, Y. (2018). An enhanced fuzzy evidential DEMATEL method with its application to identify critical success factors, Soft computing, 22(15), 5073-5090, 2018. https://doi.org/10.1007/s00500-018-3311-x

He, Z.; Jiang, W. (2018). An evidential Markov decision making model, Information Sciences, 467, 357-372, 2018. https://doi.org/10.1016/j.ins.2018.08.013

He, Z.; Jiang, W. (2018). An evidential dynamical model to predict the interference effect of categorization on decision making, Knowledge-Based Systems, 150, 139-149, 2018. https://doi.org/10.1016/j.knosys.2018.03.014

Hong, C.; Zhang, J.; Cao, X.B.; Du, W.B. (2016). Structural properties of the Chinese air transportation multilayer network, CHAOS SOLITONS & FRACTALS, 86, 28-34, 2016. https://doi.org/10.1016/j.chaos.2016.01.027

Hu, K.; Ye, J.; Fan, E.; Shen, S.; Huang, L.; Pi, J. (2017). A novel object tracking algorithm by fusing color and depth information based on single valued neutrosophic cross-entropy, Journal of Intelligent & Fuzzy Systems, 32(3), 1775-1786, 2017. https://doi.org/10.3233/JIFS-152381

Jiang, W. (2018). A correlation coefficient for belief functions, International Journal of Approximate Reasoning, 2018, p. Published on line, Doi: 10.1016/j.ijar.2018.09.001. https://doi.org/10.1016/j.ijar.2018.09.001

Jiang, W.; Hu, W. (2018). An improved soft likelihood function for Dempster-Shafer belief structures, International Journal of Intelligent Systems, 33(6), 1264-1282, 2018. https://doi.org/10.1002/int.21980

Jiang, W.; Huang, C. (2018). A Multi-criteria Decision-making Model for Evaluating Suppliers in Green SCM, International Journal of Computers Communications & Control, 13(3), 337-352, 2018. https://doi.org/10.15837/ijccc.2018.3.3283

Jiang, W.; Wang, S. (2017). An Uncertainty Measure for Interval-valued Evidences, International Journal of Computers Communications & Control, 12(5), 631-644, 2017. https://doi.org/10.15837/ijccc.2017.5.2950

Kang, B.; Deng, Y.; Hewage, K.; Sadiq, R. (2018). A method of measuring uncertainty for Znumber, IEEE Transactions on Fuzzy Systems, 2018, p. DOI:10.1109/TFUZZ.2018.2868496. https://doi.org/10.1109/TFUZZ.2018.2868496

Kannan, S.R.; Ramathilagam, S.; Devi R.; Hines, E. (2012). Strong fuzzy c-means in medical image data analysis, Journal of Systems and Software, 85(11), 2425-2438, 2012, doi:10.1016/j.jss.2011.12.020. https://doi.org/10.1016/j.jss.2011.12.020

Kittaneh, O.A.; Khan, M.A.U.; Akbar, M.; Bayoud H.A. (2016). Average Entropy: A New Uncertainty Measure with Application to Image Segmentation, American Statistician, 70, 18-24, 2016. https://doi.org/10.1080/00031305.2015.1089788

Kuo, T. (2016). A modified TOPSIS with a different ranking index, European Journal of Operational Research, 260, 2016.

Li, P.; Chen, Z.; Yang, L.T.; Zhao, L.; Zhang, Q. (2017). A privacy-preserving high-order neuro-fuzzy c-means algorithm with cloud computing, Neurocomputing, 2017. https://doi.org/10.1016/j.neucom.2016.08.135

Li, Y.; Deng, Y. (2018). Generalized Ordered Propositions Fusion Based on Belief Entropy, International Journal of Computers Communications & Control, 13(5), 792-807, 2018. https://doi.org/10.15837/ijccc.2018.5.3244

Li, Z.; Chen, L.; Nan, G. (2018). Small-scale Renewable Energy Source Trading: A Contract Theory Approach, IEEE Transactions on Industrial Informatics, 14(4), 1491-1500, 2018. https://doi.org/10.1109/TII.2017.2776241

Liang, W.; He, J.; Wang, S.; Yang, L.; Chen, F. (2018). Improved cluster collaboration algorithm based on wolf pack behavior, Cluster Computing, 2018, p. Published on line, doi: 10.3390/s17040922. https://doi.org/10.3390/s17040922

Lourenzutti, R.; Krohling, R.A.; Reformat, M.Z. (2017). Choquet based TOPSIS and TODIM for dynamic and heterogeneous decision making with criteria interaction, Information Sciences, 408, 41-69, 2017. https://doi.org/10.1016/j.ins.2017.04.037

Mahela, O.P.; Shaik, A.G. (2017). Power quality recognition in distribution system with solar energy penetration using S -transform and Fuzzy C-means clustering, Renewable Energy, 106, 37-51, 2017. https://doi.org/10.1016/j.renene.2016.12.098

Mohan, J.; Krishnaveni, V.; Guo, Y. (2013). MRI denoising using nonlocal neutrosophic set approach of wiener filtering, Biomedical Signal Processing & Control, 8(6), 779-791, 2013. https://doi.org/10.1016/j.bspc.2013.07.005

Muller, H.; Michoux, N.; Bandon, D.; Geissbuhler, A. (2004). A review of content based image retrieval systems in medical applications clinical benefits and future directions, International Journal of Medical Informatics, 73(1), 1-23, 2004. https://doi.org/10.1016/j.ijmedinf.2003.11.024

Nădăban, S.; Dzitac, S. (2016). Neutrosophic TOPSIS: A general view, 2016 6th International Conference on Computers Communications and Control, IEEE, 250-253, 2016.

Nădăban, S.; Dzitac, S.; Dzitac, I. (2016). Fuzzy TOPSIS: A general view, Procedia Computer Science, 91, 823-831, 2016. https://doi.org/10.1016/j.procs.2016.07.088

Nayak, J.; Naik, B.; Behera, H.S.; Abraham, A.(2017);

Hybrid Chemical Reaction based Metaheuristic with Fuzzy c-means Algorithm for Optimal Cluster Analysis, Expert Systems with Applications, 79, 282-295, 2017. https://doi.org/10.1016/j.eswa.2017.02.037

Onu, U.P.; Xie, Q.; Xu, L. (2017). A Fuzzy TOPSIS model Framework for Ranking Sustainable Water Supply Alternatives, Water Resources Management An International Journal Published for the European Water Resources Association, 1-15, 2017.

Peng, J.; Wang, J.; Wu, X.; Wang, J.; Chen, X. (2015). Multi-valued Neutrosophic Sets and Power Aggregation Operators with Their Applications in Multi-criteria Group Decisionmaking Problems, International Journal of Computational Intelligence Systems, 8(2), 345- 363, 2015. https://doi.org/10.1080/18756891.2015.1001957

Qian, P.; Zhao, K.; Jiang, Y.; Su, K.H.; Deng, Z.; Wang, S.; et al. (2017). Knowledgeleveraged transfer fuzzy C -Means for texture image segmentation with self-adaptive cluster prototype matching, Knowledge-Based Systems, 2017.

Reyes-Galaviz, O.F.; Pedrycz, W. (2017). Enhancement of The Classification and Reconstruction Performance of Fuzzy C-Means with Refinements of Prototypes, Fuzzy Sets & Systems, 318, 80-99, 2017. https://doi.org/10.1016/j.fss.2016.07.002

Shafer, G. (1976). A Mathematical Theory of Evidence, New Jersey, Princetion University Press, 1976.

Shan, J.; Cheng, H.D.; Wang, Y. (2012). A novel segmentation method for breast ultrasound images based on neutrosophic l-means clustering, Medical Physics, 39(9), 5669-5682, 2012. https://doi.org/10.1118/1.4747271

Wang, B.; Xiong, H.; Jiang, X.; Zheng, Y.F. (2014). Data-Driven Hierarchical Structure Kernel for Multiscale Part-Based Object Recognition, IEEE Transactions on Image Processing, 23(4), 1765-1778, 2014, doi:10.1109/TIP.2014.2307480. https://doi.org/10.1109/TIP.2014.2307480

Wang, H.; Smarandache, F.; Sunderraman, R.; Zhang, Y.Q. (2005). Interval Neutrosophic Sets and Logic: Theory and Applications in Computing: Theory and Applications in Computing. vol. 5, Infinite Study, 2005.

Wang, H.; Smarandache, F.; Zhang, Y.; Sunderraman, R. (2010). Single valued neutrosophic sets, Rev Air Force Acad, 17, 4-10, 2010.

Wang, P.; Hu, X.; Li, Y.; Liu, Q.; Zhu, X. (2016). Automatic cell nuclei segmentation and classification of breast cancer histopathology images, Signal Processing 122, 1 - 13, 2016. https://doi.org/10.1016/j.sigpro.2015.11.011

Xiao, F. (2019). Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy, Information Fusion, 46(2019), 23-32, 2019;.

Xin, Z.; Shitong, W. (2012). Neutrosophic image segmentation approach based on similarity, Application Research of Computers, 29(6), 2371-2374, 2012.

Xiong, H.; Zheng, D.; Zhu, Q.; Wang, B.; Zheng, Y.F. (2013). A Structured Learning-Based Graph Matching Method for Tracking Dynamic Multiple Objects, IEEE Transactions on Circuits and Systems for Video Technology, 23(3), 534-548, 2013, doi:10.1109/TCSVT.2012.2210801. https://doi.org/10.1109/TCSVT.2012.2210801

Xu, S.; Jiang, W.; Deng, X.; Shou, Y. (2018). A modified Physarum-inspired model for the user equilibrium traffic assignment problem, Applied Mathematical Modelling, 55, 340-353, 2018. https://doi.org/10.1016/j.apm.2017.07.032

Xu, Z.; Hu, C.H.; Yang, F.; Kuo, S.H.; Goh, C.K.; Gupta, A.; et al. (2017). Data-driven Inter-Turn Short Circuit Fault Detection in Induction Machines, IEEE Access, 5(1), 25055- 25068, 2017. https://doi.org/10.1109/ACCESS.2017.2764474

Ye, J. (2013). Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment, International Journal of General Systems, 42(4), 386-394, 2013. https://doi.org/10.1080/03081079.2012.761609

Ye, J. (2014). A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets, Journal of Intelligent & Fuzzy Systems, 26(5), 2459-2466, 2014.

Yin, L.; Deng, Y. (2018). Toward uncertainty of weighted networks: An entropybased model, Physica A: Statistical Mechanics and its Applications, 508, 176-186, 2018, doi:http://doi.org/10.1016/j.physa.2018.05.067. https://doi.org/10.1016/j.physa.2018.05.067

Zadeh, L.A. (2011). A Note on Z-numbers, Information Sciences, 181(14), 2923-2932, 2011. https://doi.org/10.1016/j.ins.2011.02.022

Zhang, G.; Wang, D. (2014). Neutrosophic image segmentation approach integrated LPG & PCA, Journal of Image & Graphics, 19(5), 693-700, 2014.

Zhang, H.; Ji, P.; Wang, J.; Chen, X. (2015). An Improved Weighted Correlation Coefficient Based on Integrated Weight for Interval Neutrosophic Sets and its Application in Multicriteria Decision-making Problems, International Journal of Computational Intelligence Systems, 8(6), 1027-1043, 2015. https://doi.org/10.1080/18756891.2015.1099917

Zhang, M.; Zhang, L.; Cheng, H.D. (2010). A neutrosophic approach to image segmentation based on watershed method, Signal Processing, 90(5), 1510-1517, 2010. https://doi.org/10.1016/j.sigpro.2009.10.021

Zhang, X.; Mahadevan, S. (2017). Aircraft re-routing optimization and performance assessment under uncertainty, Decision Support Systems, 96, 67-82, 2017. https://doi.org/10.1016/j.dss.2017.02.005

Zhang, X.; Mahadevan, S.; Deng, X. (2017). Reliability analysis with linguistic data: An evidential network approach, Reliability Engineering & System Safety, 162, 111-121, 2017. https://doi.org/10.1016/j.ress.2017.01.009

Zhao, X.; Wang, S.T.; Juna, W.U. (2011). Neutrosophic image segmentation approach based on thermal balance, Computer Engineering, 37(19), 210-212, 220, 2011.



Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.