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Abstract. We approach the full fuzzy linear programming by grounding
the definition of the optimal solution in the extension principle frame-
work. Employing a Monte Carlo simulation, we compare an empirically
derived solution to the solutions yielded by approaches proposed in the
literature. We also propose a model able to numerically describe the
membership function of the fuzzy set of feasible objective values. At the
same time, the decreasing (increasing) side of this membership function
represents the right (left) side of the membership function of the fuzzy
set containing the maximal (minimal) objective values. Our aim is to
provide decision-makers with relevant information on the extreme values
that the objective function can reach under uncertain given constraints.
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1 Introduction

Mathematical optimization is an important topic of operations researches and
is widely used in making good decisions. Including fuzzy concepts in mathemat-
ical models the researchers extended even more its applicability. In this study
we analyze possible solutions to linear programming problems with both fuzzy
coefficients and decision variables. Such problems arise when a real life system
is modeled as an optimization problem under a certain kind of uncertainty. Li
et al. [12] described a method able to transform heterogeneous information into
trapezoidal fuzzy numbers, and Morente-Molinera et al. [15] used the sentiment
analysis and fuzzy linguistic modeling procedures to organize the unstructured
information to properly work with it.

Highlighting the limits and achievements of fuzzy approaches from the liter-
ature and comparing the use of quantitative and qualitative scales in measuring
the decisions, Dubois [7] provided critical overview of the role of fuzzy sets in
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the field of decision analysis. One of the open questions formulated in [7] is re-
lated to developing a methodology able to validate the fuzzy decision analysis
approaches.

Ghanbari et al. [10] surveyed the models and solutions provided in the litera-
ture to fuzzy linear programming problems. One section was devoted to solving
full fuzzy linear programming problems, including full fuzzy transportation prob-
lems. Their survey presented the practical applications of this class of problems
and discussed some limitations of the existing solving methods.

Baykasoglu and Subulan [1] carried out a research on fuzzy efficient solutions
to full fuzzy reverse logistics network design problem with fuzzy decision vari-
ables. Their study took into consideration different levels of uncertainty and the
risk-averse attitude of the decision maker. Later on, Baykasoglu and Subulan [2]
proposed a constrained fuzzy arithmetic approach for solving a wide variety of
fuzzy transportation problems. They compared their solution approach with the
state of the art approaches from the literature.

Prez-Cañedo and Concepción-Morales [16] proposed a solution approach to
derive a unique optimal fuzzy value to a full fuzzy linear programming problem
with inequality constraints containing unrestricted LR fuzzy parameters and
decision variables. Later on, in [17] they used the lexicographic optimization to
rank LR-type intuitionistic fuzzy numbers and introduced a method to derive
solutions to full intuitionistic fuzzy linear programming problems with unique
optimal values.

Stanojević et al. [19] applied the interval expectation to trapezoidal fuzzy
numbers and used it to transform the fuzzy linear programming problem into
an interval optimization problem. An order relation was employed to rank the
obtained intervals; and a parametric model was used to handle the acceptance
degree of the violated fuzzy constraints. Finally, the Pareto optimal solutions to
the parametric bi-objective linear programming problem were analyzed.

There are many studies in the recent literature announcing the usefulness of
fuzzy linear programming models in their fields, and the possibility to use them
to replace the classic linear models. For instance, Zhang et al. [22] proposed soft
consensus cost models for group decision making, and discussed their economic
interpretations. Emphasizing that fuzzy information is widely used to describe
the uncertain preferences of the decision-makers when crisp values fail to rep-
resent the real viewpoints, the authors planed to include interval preferences in
their linear models.

Liu and Kao [14] proposed a solution approach to a fuzzy transportation
problem with crisp decision variables based on the extension principle. In order
to simplify their approach they imposed a restrictive constraint of total supply
less or equal to the total demand, thus loosing its generality. However, their
approach is significant and can be extended to a more general one, namely
to solve a full fuzzy linear programming problem. Liu [13] solved a fractional
transportation problem with fuzzy parameters using the same solution concept
based on the extension principle.
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Ezzati et al. [9] applied fuzzy arithmetic and derived the triangular fuzzy
value of the objective function with respect to the triangular fuzzy values of
the decision variables and parameters. Then, he constructed a 3-objective crisp
problem and solved it by a lexicographic method. We include one of the examples
solved in [9] in our experiments; compare their solution to the empirical solution
obtained by our Monte Carlo simulation; and draw some conclusions.

Bhardwaj and Kumar [4] pointed out a shortcoming that arose in [9] when
fuzzy inequality constraints were transformed into equalities.

Kumar et al. [11] employed a ranking function (for the fuzzy number values
of the objective function) and a component-wise comparison of the left and
right hand sides of the constraints to transform the full fuzzy problem into a
deterministic one. They finally solved one single objective linear programming
problem deriving optimal values for all components of all decision variables.

Das et al. [6] introduced a new method to solve fully fuzzy linear programming
problem with trapezoidal fuzzy numbers. Their method was based on solving a
mathematical model derived from the multiple objective linear programming
problem and lexicographic ordering method. They illustrated the applicability
of their approach by solving real life problems as production planning and diet
problems.

The main contribution of this paper is three-fold: (i) we define the member-
ship functions of the fuzzy set solution components to a full fuzzy linear program;
(ii) using a Monte Carlo simulation we compare the empirical solutions based on
the new introduced definition to the analytical solutions provided in the litera-
ture; and (iii) we propose a model able to numerically describe the membership
function of the fuzzy set of the feasible objective values.

Our presentation further includes: Section 2 that presents notation and ter-
minology; Section 3 that introduces our advances in fuzzy linear optimization
through the extension principle, and the new optimization model to depict the
feasible objective values; Section 4 that reports our numerical results, and Sec-
tion 5 that contains our concluding remarks.

2 Preliminaries

Zadeh [20] introduced the fuzzy sets as collection of elements with certain mem-
bership degrees. With respect to a universe X, a fuzzy subset Ã in X is generally
defined by Ã =

{(
x, µÃ(x)

)
|x ∈ X

}
, where µÃ is the membership function of

Ã, µÃ(x) represents the membership degree of x in Ã, µÃ(x) ∈ [0, 1].

The set of elements of the universe X whose membership degree in Ã is
greater than α, α ∈ [0, 1], is called the α-level set (or α-cut) of the fuzzy subset

Ã. It is formalized by [
Ã
]
α

=
{
x ∈ R|µÃ (x) ≥ α

}
.

The set
{
x ∈ R|µÃ (x) > 0

}
is called the support of the fuzzy subset Ã.
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The special fuzzy subsets of the real numbers universe R that are convex and
normalized, and whose membership function is upper semi-continuous and has
the functional value 1 at least at one element are called fuzzy numbers. They
were introduced in [21] together with their elementary arithmetic operations.
Any classic arithmetic operator between real numbers can be extend to a fuzzy
operator between fuzzy numbers with the help of the extension principle.

A triangular fuzzy number Ã =
(
a1, a2, a3

)
, with a1 ≤ a2 ≤ a3 is an especial

fuzzy set with the membership function defined as follows:

µÃ (x) =


(
x− a1

)
/
(
a2 − a1

)
, a1 ≤ x < a2,(

a3 − x
)
/
(
a3 − a2

)
, a2 ≤ x ≤ a3,

0, otherwise.

For each α ∈ (0, 1] the α-cut of a triangular fuzzy number Ã =
(
a1, a2, a3

)
is

the interval [
Ã
]
α

=
[
αa2 + (1− α) a1, αa2 + (1− α) a3

]
. (1)

An LR flat fuzzy number [8] is a quadruple (m,n, α, β)LR, α, β > 0 whose
components define its corresponding membership function as follows:

µÃ (x) =


L ((m− x) /α) , x ≤ m,

1, m < x < n,
R ((x− n) /β) , n ≤ x,

0, otherwise,

where L and R are reference non-increasing functions defined on the interval
[0,∞), taking values from the interval [0, 1], and fulfilling the double equality
L (0) = R (0) = 1.

Bellman and Zadeh [3] formulated the extension principle widely used to
aggregate the fuzzy subsets. Applying the extension principle, the fuzzy subset
B̃ of the universe Y that is intended to be the aggregation of the fuzzy subsets
Ã1, Ã2, . . . , Ãr over their universes X1, X2, . . . , Xr through the function f that
is a mapping of the Cartesian product X1 ×X2 × . . .×Xr to the universe Y is
defined through its membership function as

µB̃(y) =

 sup
(x1,...,xr)∈f−1(y)

(
min

{
µÃ1

(x1) , . . . , µÃr
(xr)

})
, f−1 (y) 6= ∅,

0, otherwise.

In Section 3 we apply the extension principle to define a solution to full fuzzy
linear programming (FF-LP) problems. Zimmermann [23] and [24] has already
formulated solutions to fuzzy mathematical programming problems based on the
extension principle. However, he solved another class of problems, namely vector
optimization problems involving fuzzy goals and fuzzy constraints.

The extension principle was also used to define the elementary arithmetic
operations over the set of fuzzy numbers. We recall the definitions for addition,
subtraction and multiplication of triangular fuzzy numbers since we use them in
the sequel.
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Given two triangular fuzzy numbers Ã = (a1, a2, a3) and B̃ = (b1, b2, b3), the
basic arithmetic operations are defined as follows:

– addition: Ã+ B̃ = (a1 + b1, a2 + b2, a3 + b3);

– subtraction: Ã− B̃ = (a1 − b3, a2 − b2, a3 − b1);

– multiplication: the exact result of Ã · B̃ is commonly approximated by the
triangular fuzzy number (c1, c2, c3), where c2 = a2b2 and

c1 = min {a1b1, a1b3, a3b1, a3b3} , c3 = max {a1b1, a1b3, a3b1, a3b3} .

3 The optimization via the extension principle

Without loss of generality an optimization problem consists in finding maximum
of a real valued objective function f over a feasible set X. A formalized model
is given by

max f (x) ,
subject to

x ∈ X,
(2)

where, x is the vector decision variable and f : X → R.
In a full fuzzy linear programming problem the objective function is linear;

the feasible set is defined with the help of linear constraints; and uses fuzzy
numbers for the both coefficients and decision variables. For a maximization
problem, a formalized model is given below.

max f̃ (x̃) =

n∑
j=1

c̃j x̃j ,

subject to ∑
j=1,n

ãij x̃j � b̃i, i = 1,m,

x̃j � 0, j = 1, n.

(3)

In order to define an optimal solution to Problem (3), we employ the crisp linear
programming problem

max

n∑
j=1

cjxj ,

subject to ∑
j=1,n

aijxj ≤ bi, i = 1,m,

xj ≥ 0, j = 1, n,

(4)

where the real numbers aij , bi, cj and xj , i = 1, . . . ,m, j = 1, . . . , n belong to

the supports of the fuzzy numbers ãij , b̃i, c̃j and x̃j respectively.



6 B. Stanojević, M. Stanojević

3.1 The membership functions of the fuzzy set solution

Let us denote by Xa,b the feasible set of Problem (4). Let P(ã,̃b,c̃) (a, b, c) denote

the aggregated membership level of all parameters,

P(ã,̃b,c̃) (a, b, c) = min
{
µã (a) , µb̃ (b) , µc̃ (c)

}
, (5)

where
µã (a) = min

{
µãij (aij) |i = 1,m, j = 1, n

}
,

µb̃ (b) = min
{
µb̃i (bi) |i = 1,m,

}
,

µc̃ (c) = min
{
µc̃j (cj) |j = 1, n

}
.

We follow Liu [13], and apply the extension principle to define the member-
ship function of the fuzzy optimal value

µf̃ (z) =


max

(a,b,c)|z= max
x∈Xa,b

cTx

(
P(ã,̃b,c̃) (a, b, c)

)
, ∃a, b, c|z = max

x∈Xa,b

cTx,

0, otherwise.

Liu [13] used such membership function to describe the fuzzy solution value to
a transportation problem with fuzzy numbers and crisp decision variables. In
addition, we use the extension principle to define each fuzzy optimal solution
component as seen in Formula (6).

µx̃ (x) =


max

(a,b,c)|cT x= max
y∈Xa,b

cT y

(
P(ã,̃b,c̃) (a, b, c)

)
, ∃a, b, c|cTx = max

y∈Xa,b

cT y,

0, otherwise.
(6)

3.2 The mathematical model

Keeping in mind above definitions we now introduce the mathematical model
(7) that computes the membership degree of each feasible objective value z.
It is clear that the decreasing piece of the so determined membership function
describes the fuzzy set solution to a maximization problem (3). Model (7)

max α
subject to

µãij (aij) ≥ α, i = 1,m, j = 1, n
µb̃i (bi) ≥ α, i = 1,m,

µc̃j (cj) ≥ α, j = 1, n,
cTx = z,
x ∈ Xa.b,

(7)

is non-linear and maximizes α with respect to variables x, a, b, c and α.
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Model (7) consists in maximizing P(ã,̃b,c̃) (a, b, c) over the feasible combi-

nations of the parameters (a, b, c) able to derive a vector x ∈ Xa.b such that
cTx = z, separately for fixed values z of the objective function. Indeed, for a
value α = P(ã,̃b,c̃) (a, b, c) we have

µã (a) ≥ α, µb̃ (b) ≥ α, µc̃ (c) ≥ α,

with at least one equality among the inequalities. Therefore, the maximization
of α determines the highest level of membership for the given crisp value z.

Considering that all parameters are expressed by triangular fuzzy numbers
we use the definition of α-cut intervals (1) to rewrite the constraint system of
(7). Since

µãij (aij) ≥ α⇔ aij ∈ [ãij ]α , i = 1,m, j = 1, n

µb̃i (bi) ≥ α⇔ bi ∈
[
b̃i

]
α
, i = 1,m,

µc̃j (cj) ≥ α⇔ cj ∈ [c̃j ]α , j = 1, n,

we derive the specific Model (8) whose first three sets of constraints are linear.

max α
subject to

αa2ij + (1− α) a1ij ≤ aij ≤ αa2ij + (1− α) a3ij , i = 1,m, j = 1, n
αb2i + (1− α) b1i ≤ bi ≤ αb2i + (1− α) b3i , i = 1,m,
αc2j + (1− α) c1j ≤ cj ≤ αc2j + (1− α) c3j , j = 1, n,
cTx = z,
x ∈ Xa.b.

(8)

Figure 1 shows a fuzzy set of the feasible objective values obtained by solv-
ing Model (8). The envelope of optimal objective values obtained by a dual
optimization as suggested in Liu [13] can be also seen in Figure 1.

3.3 The Monte Carlo simulation

Monte Carlo algorithms are widely used to provide numerical results by a random
sampling of certain parameters. Buckley and Jowers’s book [5] on Monte Carlo
methods in fuzzy optimization focused exclusevly on generating random fuzzy
numbers to be used in evaluating the objective functions. Our approach generates
random crisp values for the parameters, finds crisp optimal values, and uses
them in constructing the fuzzy set solution value to the original full fuzzy linear
problem.

The definitions of the membership functions given in Section 3.1 are diffi-
cult to be directly used in practice. An analytical definition would be the most
convenient, but such a definition is also hard (if not impossible) to be obtained.
Model (7) introduced in Section 3.2 provides the upper bounds on the maximal
values of the objective function with respect to their membership degrees, but
lower bounds on those maximal values are still unknown.



8 B. Stanojević, M. Stanojević

Fig. 1. Fuzzy set of feasible objective values obtained by solving Model (8); and the
results of a Monte Carlo simulation that describe the fuzzy set of optimal solution
values

Algorithm 1 The Monte Carlo simulation-based algorithm to disclose the
shapes of the membership functions of the fuzzy set solutions to Problem (3)

Input: a natural number p; a sequence α1, α2, . . . , αp of equidistant values from [0, 1];

and the membership functions of the fuzzy sets of the coefficients ã, b̃ and c̃.
1: Set L = ∅.
2: for k = 1, p do

3: Randomly generate aij ∈ [ãij ]αk
, bi ∈

[
b̃i
]
αk

, cj ∈ [c̃j ]αk
, i = 1,m, j = 1, n.

4: Solve Problem (4) with the generated coefficients.

5: Set L = L ∪
{(
xk, zk, P(ã,b̃,c̃) (a, b, c)

)}
, where zk is the optimal value and xk

is the optimal solution to Problem (4); and P(ã,b̃,c̃) (a, b, c) is defined as in (5).

6: end for
Output: the list L.

Under additional assumptions, Liu and Kao [14] described the lower bound
on the maximal values of the objective function of a full fuzzy transportation
problem. They made use of the dual of the crisp transportation problem to
transform a two level min-max model to a two level max-max problem that was
finally solved as an one-level max problem.

We aim to disclose the shapes of the membership functions of the fuzzy sets
solution to Problem (3) by a Monte Carlo simulation which generates random
values for the coefficients needed in obtaining optimal solutions to Problem (4).
In order to obtain more accurate shapes, for fixed values of α ∈ [0, 1], the values
of the coefficients are randomly chosen from the α-cut interval of their corre-
sponding fuzzy numbers.

Algorithm 1 describes the steps needed for the simulation.
The third component of the triple

lk =
(
xk, zk, P(ã,̃b,c̃) (a, b, c)

)
,
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Fig. 2. The results of several Monte Carlo simulations with different number of itera-
tions; and the envelope’s approaximation obtained via the optimization model

which is an element of the output list L of Algorithm 1, namely P(ã,̃b,c̃) (a, b, c),

represents a minorant of the membership degree of both xk and zk.

After running the algorithm we group the elements lk ∈ L with respect to

their second component as follows: we split the interval

[
min
lk∈L

zk,max
lk∈L

zk
]

in q

sub-intervals I1, I2,. . ., Iq of the same length 1
q

(
max
lk∈L

zk − min
lk∈L

zk
)

, and compute

the values

fj = M
({
zk|lk ∈ L, zk ∈ Ij

})
, j = 1, . . . , q,

where M (S) represents the mean value of the elements belonging to the set S.
The membership degree of the value fj is obtained as maximum of the values of
the third component of those elements lk ∈ L that have the second component
in Ij . In a similar way, grouping the elements of L in q sub-intervals of the same
length, with respect to the values of the components of the vector xk, we compute
the membership values that correspond to the mean values of the components
belonging to the same sub-interval.

This simulation provides an empirical computation for the membership func-
tions of the solution and solution value to Problem (3) when solving Model (7)
fails to obtain a correct solution due to its non-linearity. Model (7) is replaced
by the quadratic Model (8) when triangular fuzzy numbers are used to describe
the components of the parameters (a, b, c). In this case, and also in the case of
the trapezoidal fuzzy numbers used to describe the parameters, the non-linearity
appears in last two constraints cTx = z and x ∈ X(a, b), and it is very likely
one to be able to solve the model correctly. On the other side, if LR flat fuzzy
numbers [8] are used to describe the parameters of Problem (3), the non-linearity
appears in all constraints, and may create difficulties in finding a global optimal
solution.
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4 Numerical example

We recall the following example from the literature ([9], [11]).

max c̃T x̃,
subject to

ãx̃ = b̃,
x̃ � 0,

(9)

where the fuzzy number values of the coefficients are

ã =

[
(8; 10; 13) (10; 11; 13) (9; 12; 13) (11; 15; 17)

(12; 14; 16) (14; 18; 19) (14; 17; 20) (13; 14; 18)

]
, (10)

b̃ =

[
(271.75; 411.75; 573.75)

(385.5; 539.5; 759.5)

]
, c̃ =


(10; 15; 17)
(10; 16; 20)
(10; 14; 17)
(10; 12; 14)

 . (11)

Fig. 3. Fuzzy set of optimal objective values to Problem (9) defined with the values of
the parameters given in (10) and (11)

In short, the solution approach proposed in Kumar et al. [11] used a ranking
function to transform the fuzzy number values of the objective function into
crisp values; and a component-wise comparison of the left and right hand sides
of the fuzzy constraints to transform them into deterministic ones. The obtained
crisp linear problem was solved, and the optimal values for all components of all
decision variables were derived. The fuzzy number value of the objective function
was finally computed using the fuzzy number values of the decision variables and
parameters.

The solution approach proposed in Ezzati et al. [9] first formally computed
the components of the triangular fuzzy value of the objective function with re-
spect to the triangular fuzzy values of the decision variables and parameters.
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Second, it constructed a three-objective crisp problem and solved it by a lexico-
graphic method.

The component-wise method (described in Stanojević et al. [18] for solving
full fuzzy linear fractional programming problems, but applied here to the linear
case) was based on solving two crisp linear programming problems for several
fixed α levels. The parameters for these crisp problems were the left and right
endpoints respectively of the α-cut intervals. Their optimal solutions were used
to construct the membership functions of the fuzzy numbers representing the
final solution.

Fig. 4. Fuzzy sets of optimal values of the decision variables to Problem (9) defined
with the values of the parameters given in (10) and (11)

Figures 3 and 4 show our empirical results obtained by a Monte Carlo simu-
lation compared to the results found in the literature. Increasing the number of
iterations, the simulation provides more accurate results.

Aiming to find the maximal values that the objective function can reach we
must pay attention to the right sides of the fuzzy numbers. It is clearly shown in
Figure 3 that both solutions from the literature are far from the desired values
no matter how the membership degree is chosen.

Tables 1 and 2 report the same solutions by their components as triangu-
lar fuzzy numbers. For the Monte Carlo simulation we approximate the results
providing the extreme values, i.e. the minimum, the value with maximal am-
plitude and the maximum. For our analysis and graphic representations we run
the component-wise method and reported the obtained solution, but used the
numerical values reported in Ezzati et al. [9] for other two methods [9] and [11].
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Table 1. Components of the fuzzy sets representing the optimal values of the objective
function

Method Fuzzy number z̃∗

Component-wise [18] (321.25, 578.04, 803.63)
Ezzati et al. [9] (304.58; 509.79; 704.37)
Kumar et al. [11] (301.83; 503.23; 724.15)
MC simulation (279.37; 579.32; 985.13)

Table 2. Components of the fuzzy sets representing the optimal values of the decision
variables

Method: Comp.-wise [18] Ezzati et al. [9] Kumar et al. [11] MC simulation

x̃∗1 (32.12, 38.54, 42.39) (17.27; 17.27; 17.27) (15.28; 15.28; 15.28) (0; 38.28; 61.24)
x̃∗2 (0, 0, 17.78) (2.16; 2.16; 2.16) (2.40; 2.40; 9.10) (0; 1.32; 53.08)
x̃∗3 (0, 0, 0, 0) (4.64; 9.97; 16.36) (6.00; 11.25; 11.25) (0; 1.28; 51.54)
x̃∗4 (0, 0, 0, 0) (6.36; 6.36; 6.36) (6.49; 6.49; 9.49) (0; 1.14; 45.60)

5 Conclusion

In this study we addressed the full fuzzy linear programming, and formalized the
definition of the optimal solution via Zadeh’s extension principle. We conducted
a Monte Carlo simulation, and compared the solution derived in this way to
the solutions yielded by approaches proposed in the literature. Concluding that
there is a wide gap between our empirical results and the results provided by
the solution approaches from the literature, we proposed a model that is able
to describe numerically the membership function of the fuzzy set of feasible
objective values that follows the extension principle. Our goal was to provide
decision-makers with more relevant information on the extreme values that the
objective function can reach under uncertain given constraints.

In our future research we will conduct more experiments on a wider class of
mathematical programming problems (e.g. full fuzzy linear fractional program-
ming problems) aiming to prove that the simulation we proposed can be used
as a basic method to test the validity of any solution approach to full fuzzy
programming problems.
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18. Stanojević, B., Dzitac, I., Dzitac, S.: On the ratio of fuzzy numbers - exact
membership function computation and applications to decision making. Tech-
nological and Economic Development of Economy, 21(5), 815–832, (2015).
doi:10.3846/20294913.2015.1093563



14 B. Stanojević, M. Stanojević
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