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Introduction (1)

Human participation plays an essential role in most decisions when
analyzing data. The huge storage capacity and computational power of
computers cannot replace the human flexibility, perceptual abilities,
creativity, and general knowledge.

A proper interaction between human
and computer is essential. Moreover, such
an interaction is one of the areas in computer
science that has evolved a lot in recent years.

Real data in technologies and sciences
are often high-dimensional. So it is very difficult
to understand these data and extract patterns.
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Introduction (2)

One way of such an understanding is to make a visual insight into the data
set. Here, a hopeful view may be put on the visualization of
multidimensional data.

The goal of visualization methods
is to represent the multidimensional data in a
low-dimensional space so that certain properties
(e.g. clusters, outliers) of the structure of the
data set were preserved as faithfully as possible.

The dimensionality reduction or visualization
methods are recent techniques to discover
knowledge hidden in multidimensional data sets.
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Visualization

The human being can comprehend visual information more quickly than
textual one.

Gintautas Dzemyda Recent advances in data dimensionality reduction using multidimensional scaling 4 / 35



Visualization problem

The goal of the projection (visualization) methods is to represent the input
data items in a lower-dimensional space so that certain properties of the
structure of the data set were preserved as faithfully as possible.

Gintautas Dzemyda Recent advances in data dimensionality reduction using multidimensional scaling 5 / 35



Examples of visualization (1)
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Examples of visualization (2)
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Example of multidimensional data (breast cancer data)
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Visualization for Early Diagnosis

Breast cancer data analysis
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Introduction

Visualization of multidimensional data is a complicated problem followed
by extensive researches because it allows to the investigator

to observe data clusters

to estimate the inter-nearness between the multidimensional points

to make proper decisions

Let us have m multidimensional (n-dimensional) vectors

X1,X2 . . . ,Xm ∈ Rn Xi = (xi1, xi2 . . . , xin), i = 1, . . . ,m

The problem is to get a projection of this set of vectors on the visually
perceived low dimensional space R2 or R3. Denote projections on the
plane by Yi = (yi1, yi2), i = 1, . . . ,m.
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Dimensionality reduction methods

There exist a lot of methods that can be used for reducing the
dimensionality of data, and, particularly, for visualizing the n-dimensional
vectors.

Traditional methods
Multidimensional scaling (SMACOF, Relative MDS,
Diagonal Majorization Algorithm (DMA)...)
Sammon’s projection
Principal components
Direct methods (Chernoff faces, Andrews curves, star)
Others

Neural networks
Self-organizing map (SOM)
Feed-forward networks

Combinations of traditional methods and neural networks

Manifold learning methods (locally linear embedding (LLE),
Laplacian Eigenmaps (LE), Isomap...)
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Abstract (1)

Multidimensional scaling (MDS) is one of the most popular methods
for a visual representation of multidimensional data.
Recently, it finds wide applications of various nature: face recognition,
analysis of regional economic development, image graininess
characterization.
Classical approaches to minimize the stress in multidimensional
scaling (MDS) reached their limits. New viewpoint to the problem is
necessary, including its formulation and ways of solving.
A novel geometric interpretation of the stress function and
multidimensional scaling in general (Geometric MDS) has been
proposed.
A strategy of application of the discovered option to minimize the
stress function is presented and examined.
The novel geometric approach will allow developing a new class of
algorithms to minimize MDS stress, including global optimization and
high-performance computing.
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Abstract (2)

Following this interpretation:

the step size and direction forward the minimum of the stress function
are found analytically for a separate point without reference to the
analytical expression of the stress function, numerical evaluation of its
derivatives and the linear search,

the direction coincides with the steepest descent direction, and the
analytically found step size guaranties almost the optimal step in this
direction.
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Introduction (1)

Suppose, we have a set X = {Xi = (xi1, . . . , xin), i = 1, . . . ,m} of
n-dimensional data points (observations) Xi ∈ Rn, n > 3.
Dimensionality reduction and visualization requires estimating the
coordinates of new points Yi = (yi1, . . . , yid), i = 1, . . . ,m, in a
lower-dimensional space (d < n) by holding proximities δij between
multidimensional points Xi and Xj , i , j = 1, . . . ,m, as much as
possible.
Proximity δij can be measured e.g. by the distance between Xi and Xj .
The input data for MDS consists of the symmetric m ×m matrix
D = {δij , i , j = 1, . . . ,m} of proximities between pairs of points Xi

and Xj . If the Minkowski distance is used as the proximity, then

δij = dij =

(
n∑

k=1

|xik − xjk |q
) 1

q

, 1 6 i , j 6 m.

When q = 2, the distance becomes the Euclidean distance.
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Introduction (2)

MDS finds the coordinates of new points Yi representing Xi in a
lower-dimensional space Rd by minimizing the multimodal stress function.
Consider raw stress function:

S(Y1, . . . ,Ym) =
m∑
i=1

m∑
j=i+1

(dij − d∗ij )
2, (1)

where d∗ij is the Euclidean distance between points Yi and Yj in a
lower-dimensional space. The MDS-based dimensionality reduction
optimization problem may be formulated as follows:

min
Y1,...,Ym∈Rd

S(Y1, . . . ,Ym). (2)
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The geometric approach (1)

Without loosing the generality and for better perception of the
approach, let’s consider case, where the dimensionality of projected
space d = 2.
Suppose, we have m ×m matrix D = {dij , i , j = 1, . . . ,m} of
Euclidean distances between n-dimensional points
Xi = (xi1, . . . , xin), i = 1, . . . ,m. We aim to find two-dimensional
points Yi = (yi1, yi2), i = 1, . . . ,m by solving the problem (2).
At first, let’s have some initial configuration of points Y1, . . . ,Ym.
Then, let’s optimize the position of the particular point Yj when the
position of remaining points Y1, . . . ,Yj−1,Yj+1, . . . ,Ym is fixed. In
this case, we tend to minimize S(·) in (2) by minimizing the so-called
local stress function depending on Yj , only:

S∗(Yj) =
m∑

i=1,i 6=j

dij −

√√√√ d∑
k=1

(yik − yjk)2

2

. (3)
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The geometric approach (2)

Figure 1: An example of a single iteration of geometric method.
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The geometric approach (3)

In the centre of each circle, we have a corresponding point Yi . Radius
of the i-th circle is equal to the distance dij between the points Xi

and Xj in n-dimensional space. Point Aij lies on the line between Yi

and Yj , i 6= j .

Let Y ∗j be chosen as an average point of the points Aij over
i = 1 . . .m, i 6= j :

Y ∗j =
1

m − 1

m∑
i=1,i 6=j

Aij . (4)

When we make a step from Yj to Y ∗j , we get new intersection points
A∗ij on circles that correspond to Yj , and these points are on the line
between Yi and Y ∗j .

We will analyse the value of the local stress function S∗(Y ∗j ) and
compare it with the value S∗(Yj).
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Propositions

Proposition 1

The gradient of local stress function S∗(·) is as follows:

∇S∗|Yj
=

(
2

m∑
i=1
i 6=j

dij −
√∑d

k=1 (yik − yjk)2√∑d
k=1 (yik − yjk)2

(yik − yjk) , k = 1, . . . , d

)
.

Proposition 2

The step direction from Yj to Y ∗j corresponds to the anti-gradient of the
function S∗(·) at the point Yj :

Y ∗j = Yj −
1

2(m − 1)
∇S∗|Yj

. (5)
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Propositions

Proposition 3

Size of a step from Yj to Y ∗j is equal to

||∇S∗|Yj
||

2(m − 1)
=

1

2(m − 1)

√√√√√√√ n∑
k=1

m∑
i=1
i 6=j

(
dij −

√∑d
l=1 (yil − yjl)

2

)2

∑d
l=1 (yil − yjl)

2
(yik − yjk)2.

Proposition 4

Let Yj does not match to any local extreme point of the function S∗(·).
If Y ∗j is chosen by (4): Y ∗j = 1

m−1
∑m

i=1,i 6=j Aij , then a single step from Yj

to Y ∗j reduces a local stress S∗(·):

S∗(Y ∗j ) < S∗(Yj).
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Propositions

Proposition 5

The value of the local stress function (3)

S∗(Yj) =
m∑

i=1,i 6=j

dij −

√√√√ d∑
k=1

(yik − yjk)2

2

will converge to a local minimum when repeating steps

Y ∗j = Yj −
1

2(m − 1)
∇S∗|Yj

and Yj := Y ∗j .

.
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Propositions

Proposition 6

Let Yj does not match to any local extreme point of the function S∗(·).
Movement of any projected point by the geometric method reduces the
stress S(·) of MDS, i. e. if Y ∗j is chosen by (4): Y ∗j = 1

m−1
∑m

i=1,i 6=j Aij ,
then the stress function

S(Y1, . . . ,Ym) =
m∑
i=1

m∑
j=i+1

(dij − d∗ij )
2 decreases:

S(Y1, . . . ,Yj−1,Y
∗
j ,Yj+1, . . . ,Ym) < S(Y1, . . . ,Yj−1,Yj ,Yj+1, . . . ,Ym).

Proposition 7

f (δ) = S∗
(
Yj − δ

∇S∗|Yj
||∇S∗|Yj ||

)
is not unimodal, where δ is a step size.
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Proof of the proposition 7

Figure 2: Example of the anti-gradient search
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Multiextremal local stress

Figure 3: Example of the multiextremal local stress
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Simple realization of Geometric MDS

Simple realizations of Geometric MDS are based on fixing some initial
positions of points Yi = (yi1, . . . , yid), i = 1, . . . ,m (at random, using
principal component analysis, etc.), and further changing the
positions of Yj once or several times by (5) in consecutive order from
j = 1 to j = m many times till some stop condition is met: e.g.
number of runs from j = 1 to j = m reaches some limit or the
decrease of stress function S(·) becomes less than some small
constant after two consecutive runs.

In the experiments for minimization of function S(·), the random
selection of a set Y of d-dimensional points was used and further
minimization of S(·) seeking for its local minimum was performed by
consecutive one-step changing of positions of points Y1, . . . ,Ym many
times.

This multistart procedure was repeated several times expecting to
find a better local minimum or even the global minimum.
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Experiments (1)

20 random sets Y of 30 points (m = 30) were generated inside the
4-dimensional unit hypercube (n = 4) and represented in d = 2, 3, 4
spaces using random start position for optimization.

Values in Table 1 show the minima. 11 descents among 20 ones
reached the global minimum, when d = 2. When d = 3, all descents
reached the best minimum.

Table 1: Stress value of 20 experiments for the same data set

d = 2
19.146 19.146 19.146 19.146 19.146 19.146 19.146 19.146 19.146 19.146
19.146 19.154 19.214 19.214 20.584 20.584 20.584 20.792 21.453 22.479

d = 3
2.779 2.779 2.779 2.779 2.779 2.779 2.779 2.779 2.779 2.779
2.779 2.779 2.779 2.779 2.779 2.779 2.779 2.779 2.779 2.779

d = 4
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Experiments (2)

For comparison, the same 1000 data sets of 30 random 4-dimensional
points (m = 30, n = 4) were generated and analysed by Geometric
MDS and multidimensional scaling based on stress S(·) minimization
using majorization (SMACOF) that is realized in R.

Both Geometric MDS and SMACOF used the same initial values of
points Y1, . . . ,Ym obtained by Torgerson Scaling.

When d = 2, Geometric MDS and SMACOF gave the same results in
997 cases, however the average value of S(·) is obtained a bit better
by Geometric MDS and equals 13.7570 as compared with 13.7613 by
SMACOF.

When d = 3, Geometric MDS gave the same results in 922 cases.
Average values of S(·) are almost the same: 2.9789 (Geometric
MDS) and 2.9787 (SMACOF).
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GeoGebra example (1)

Figure 4: Minimization of local stress function
M.Sabaliauskas, G.Dzemyda, ”Visual analysis of multidimensional scaling using GeoGebra”
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GeoGebra example (2)

Figure 5: Minimization of local stress function
M.Sabaliauskas, G.Dzemyda, ”Visual analysis of multidimensional scaling using GeoGebra”
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GeoGebra example (3)

Figure 6: Minimization of local stress function
M.Sabaliauskas, G.Dzemyda, ”Visual analysis of multidimensional scaling using GeoGebra”
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GeoGebra example (4)

Figure 7: Minimization of local stress function
M.Sabaliauskas, G.Dzemyda, ”Visual analysis of multidimensional scaling using GeoGebra”
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Conclusions (1)

A novel geometric interpretation of the stress function and
multidimensional scaling in general (Geometric MDS) has been
proposed.

According to the experiments, the realization of Geometric MDS gives
very similar results as SMACOF. The results are a bit better often.

These preliminary results are very promising, because the evaluated
efficiency of the Geometric MDS and the SMACOF is the same,
however Geometric MDS is much easier realizable and interpreted.

More sophisticated realizations of ideas presented in this paper should
be developed.
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Conclusions (2)

The reasons that a good performance of the proposed algorithm can
be expected as compared with other (e.g. majorization) algorithms:

1 In Geometric MDS, the step size and direction forward the minimum of
the stress function are found analytically for a separate point in a
projected space without reference to the analytical expression of the
stress function, numerical evaluation of its derivatives and the linear
search.

2 It is proved theoretically that the direction coincides with the steepest
descent direction, and the analytically found step size guarantees
almost the optimal step in this direction.

3 Despite the fact that the Geometric MDS uses the simplest (raw)
stress function, there is no need for its normalization depending on the
number m of data points, the scale of features xik and proximities δij .
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