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Introduction (1)

Human participation plays an essential role in most decisions when
analyzing data. The huge storage capacity and computational power of
computers cannot replace the human flexibility, perceptual abilities,
creativity, and general knowledge.

A proper interaction between human

and computer is essential. Moreover, such

an interaction is one of the areas in computer
science that has evolved a lot in recent years.

Real data in technologies and sciences
are often high-dimensional. So it is very difficult
to understand these data and extract patterns.
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Introduction (2)

One way of such an understanding is to make a visual insight into the data
set. Here, a hopeful view may be put on the visualization of

multidimensional data.

The goal of visualization methods

is to represent the multidimensional data in a
low-dimensional space so that certain properties
(e.g. clusters, outliers) of the structure of the
data set were preserved as faithfully as possible.

The dimensionality reduction or visualization
methods are recent techniques to discover
knowledge hidden in multidimensional data sets.
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Visualization

The human being can comprehend visual information more quickly than
textual one.
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Visualization problem

The goal of the projection (visualization) methods is to represent the input
data items in a lower-dimensional space so that certain properties of the
structure of the data set were preserved as faithfully as possible.

A ] G D 3 E 9 H 1 J
1 111091 7,04704 268399 351433 64851 -7,70285 3,98986 -150384 59192 587187
2 | 515074 14707 149299 255285 -2,27M42 -146506 7,86902 -7,36946 9,63875 7,11384
3| 191532 -4,58991 -150508 407452 -119971 -7,92136 969161 0222057 10,8834 587123
40020048 0,630172 1,08796 2,6984 -4,79242 -§,15183 429621 -046226 742289 6,15558
5| -089494 811653 -695531 661701 -8,21592 -112322 756654 -813229 10,6122 583966
6| -00323 -10,4471 -3,17563 531002 0,14175 -9,40686 952215 164615 -188292 6,64164
7| 1,723% 097497 585485 575813 1,33302 -4,35716 395199 -121654 497955  4,7983
8| 452856 11,1303 -0,52264 3,58449 -5,35348 -9,28858 96102 -304153 572042 528743
9| -0,8343 105809 7,03569 2,13677 -4,65407 -8,54866 6,28365 -271864 17,3228 542663
10 258882 818563 4,12082 586436 -3,93221 -0,99236 698705 -216161 3,14953 516401 ]
11 -1,00736 0,836051 -0,07273 5,757 -5,00482 2,68832 408388 219967 411253 658779
12| -2,78432 -0,36631 -5,02407 2,12856 -5,31326 -8,53505  4,3084 -439105 559385 6,73681
13 634916 467636 3,14195 2,93509 -4,95993 -11,4985 462661 -7,7016 709844 7,54618
14| 2,35358  9,6925 0,786942 520636 -1,26773 -11,0521 55869 -009746 10,3834 649727
15 -3,13531 -3,0484 3,19325 382046 129874 -6,93501 442466 -4,00488 152039 4,52903
16 0192348 9,22675 149804 356301 -3,13276 -7,37238 11,2558 -101955 63383 551743
17| -614634 11,5993 503532 3,68279 2,66215 -12,0582 §4343 -3,82024 -4,39663 8,02664
18| 1,66801 -1,53136 2,95147 0,441002 -6,8543 -6,11669 7,83389 -850664 12,1342 6,798
19| -2,42808 -2,35968 -0,9866 2,95973 -0,71374 -6,25115 7,022 -4,05128 0,133743 7,34149
20 -3,23398 0,729948 161084 3,8528 -9,72604 -3,64236 114746 -119365 09,5091 565706
21 -002485 3,72569 569587 196643 -8,95218 0,753423 5288 -639854 18114 7,20848
2| 17316 04579 -8,76263 0,305276 -0,84276 -13,4019 77862 -253552 132054 516366
23| -0,26349 2,65934 -0,38402 48,0786 -9,42951 -3,06817 616654 -7,08867 -3,23498 606282
24 0935001 7,62704 -589728 0,043108 -8,97537 -17,8392 557077 -13,8924 65347 541031
25| -1,13148 -3,6351 34953 403109 110707 2,57909 652097 -4,71983 597176 541212
2% -042632 10,1015 425269 29547 -8,39M3 53449 381502 -0 17,2262 3,863
27 167647 4,57368 222492 2,66839 -7,65192 -8,25385 632712 -2,59647 74368 6,75276
28| 042202 557122 -3,12425 4,19927 -163641 -0,38 959166 -7,06135 11,1317 1,69255 =
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Examples of visualization (1)
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Examples of visualization (2)

| | I T,50 0,713 -a,105 0,582 1110 L717

13
b
i
i
i

Gintautas Dzemyda Recent advances in data dimensionality reduction using multidimensional scaling 7/35



Example of multidimensional data (breast cancer data)
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x; — clump thickness,

x, — uniformity of cell size,

x5 — uniformity of cell shape,
x, — marginal adhesion,

x5 — single epithelial cell size,
xg — bare nuclei,

x7 — bland chromatin,

xg — normal nucleoli,

Xg — mitoses,

C — class (benign, malignant)
(Nepiktybinis. Piktybinis)
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Visualization for Early Diagnosis

@ Breast cancer data analysis

New patient 2
(additional tests
are necessary)

New patient 3
(urgent decisions

are necessar :
Y) New patient 1

(everything OK)
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Introduction

Visualization of multidimensional data is a complicated problem followed
by extensive researches because it allows to the investigator

@ to observe data clusters
@ to estimate the inter-nearness between the multidimensional points
@ to make proper decisions

Let us have m multidimensional (n-dimensional) vectors
X1, X0...,Xm € R" X;= (X;1,X,'2...,X,'n), i=1,...,m

The problem is to get a projection of this set of vectors on the visually
perceived low dimensional space R? or R3. Denote projections on the
plane by K = (yila.yi2)7 = 17 <o, M.
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Dimensionality reduction methods

There exist a lot of methods that can be used for reducing the
dimensionality of data, and, particularly, for visualizing the n-dimensional
vectors.

o Traditional methods

o Multidimensional scaling (SMACOF, Relative MDS,

Diagonal Majorization Algorithm (DMA)...)

e Sammon’s projection

e Principal components

o Direct methods (Chernoff faces, Andrews curves, star)
Others
@ Neural networks

o Self-organizing map (SOM)

o Feed-forward networks

e Combinations of traditional methods and neural networks
e Manifold learning methods (locally linear embedding (LLE),
Laplacian Eigenmaps (LE), Isomap...)
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Abstract (1)

Multidimensional scaling (MDS) is one of the most popular methods
for a visual representation of multidimensional data.

Recently, it finds wide applications of various nature: face recognition,
analysis of regional economic development, image graininess
characterization.

Classical approaches to minimize the stress in multidimensional
scaling (MDS) reached their limits. New viewpoint to the problem is
necessary, including its formulation and ways of solving.

A novel geometric interpretation of the stress function and
multidimensional scaling in general (Geometric MDS) has been
proposed.

A strategy of application of the discovered option to minimize the
stress function is presented and examined.

The novel geometric approach will allow developing a new class of
algorithms to minimize MDS stress, including global optimization and
high-performance computing.
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Abstract (2)

Following this interpretation:

@ the step size and direction forward the minimum of the stress function
are found analytically for a separate point without reference to the
analytical expression of the stress function, numerical evaluation of its
derivatives and the linear search,

@ the direction coincides with the steepest descent direction, and the
analytically found step size guaranties almost the optimal step in this
direction.
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Introduction (1)
@ Suppose, we have a set X = {X; = (Xj1,...,%in), i =1,...,m} of

n-dimensional data points (observations) X; € R", n > 3.
@ Dimensionality reduction and visualization requires estimating the

coordinates of new points Y; = (yi1,...,Yid), i=1,...,m, ina
lower-dimensional space (d < n) by holding proximities ¢;; between
multidimensional points X; and X;, i,j =1,..., m, as much as
possible.

@ Proximity d;; can be measured e.g. by the distance between X; and X;.
@ The input data for MDS consists of the symmetric m X m matrix
D = {0j,i,j =1,..., m} of proximities between pairs of points X;
and X;. If the Minkowski distance is used as the proximity, then

1
n q
0jj = dij = <Z|Xik_xjk|q> ;o Isijsm

k=1
@ When g = 2, the distance becomes the Euclidean distance.
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Introduction (2)

MDS finds the coordinates of new points Y; representing X; in a

lower-dimensional space R by minimizing the multimodal stress function.
Consider raw stress function:

S(Yiy o, Ym) =3 > (dy — df)?, (1)

i=1 j=i+1

where d,-j‘- is the Euclidean distance between points Y; and Y; in a
lower-dimensional space. The MDS-based dimensionality reduction
optimization problem may be formulated as follows:

in S(Y1,...,Ym) 2
Yl,..T»I/:eRd Sg ) (2)
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The geometric approach (1)

@ Without loosing the generality and for better perception of the
approach, let's consider case, where the dimensionality of projected
space d = 2.

@ Suppose, we have m x m matrix D = {dj;, i,j =1,...,m} of
Euclidean distances between n-dimensional points
Xi = (xi1,---,X%in), i =1,...,m. We aim to find two-dimensional
points Y; = (vi1,Yi2), i =1,..., m by solving the problem (2).

@ At first, let’s have some initial configuration of points Y1,..., Ym.
Then, let's optimize the position of the particular point Y; when the
position of remaining points Y1,...,Yj_1, Yjy1,..., Y is fixed. In
this case, we tend to minimize S(-) in (2) by minimizing the so-called
local stress function depending on Y], only:

2
m d
S Y= D [ di— 2wy | (3)
i=1,ij k=1
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The geometric approach (2)

Figure 1: An example of a single iteration of geometric method.
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The geometric approach (3)
@ In the centre of each circle, we have a corresponding point Y;. Radius

of the i-th circle is equal to the distance dj; between the points X;
and Xj in n-dimensional space. Point Aj; lies on the line between Y;

and Y}, i #j.
o Let YJ* be chosen as an average point of the points A;; over
i=1...mji#j:
1 m
i=—7 D A (4)
i=1,i#j

@ When we make a step from Y] to YJ* we get new intersection points
A};- on circles that correspond to Y, and these points are on the line
between Y; and YJ*

e We will analyse the value of the local stress function S*(YJ*) and
compare it with the value S*(Yj).
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Propositions

Proposition 1

The gradient of local stress function S*(-) is as follows:

T dij— oy (i — yie)?
VS*|yj:<2Z ij \/Zk_l( k= Yjk)

. (ylk y-k),k—l’.-~7d>,
i#j

Proposition 2
The step direction from Y; to YJ* corresponds to the anti-gradient of the
function S*(-) at the point Yj:

Vi =Y s VS I (5)

v
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Propositions

Proposition 3

Size of a step from Y to YJ* is equal to

2
VSl 1 n.m (dﬁ_\/27—1(YII—)G/)2> :

2
= Yik = Yjk)"
2(m—-1) 2(m-1) 1 i—1 27:1 (yir — le)2 I !

i#j

Proposition 4

Let Y; does not match to any local extreme point of the function S*(-).

If Y} is chosen by (4): Y[ = L 212 Aij» then a single step from Y;

to Y reduces a local stress S*(:):

5*(Y7) < (V).

v
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Propositions

Proposition 5

The value of the local stress function (3)

m d 2
S = > | di— | D bk —yi)?
i=1,i#j k=1
will converge to a local minimum when repeating steps
Y =Y — #VSH d Y, =Y
g =T 2(m — 1) YJ an j =T
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Propositions

Proposition 6

Let Y does not match to any local extreme point of the function S*(-).
Movement of any projected point by the geometric method reduces the

stress 5(-) of MDS, i. e. if Y[ is chosen by (4): Y} = L Do iz Ay
then the stress function

S(Y1,...,Ym) = Z Z (dij — d,jf)2 decreases:
i=1 j=i+1

S(Yla"'a\/j—la »/j*a \/j—i-la"'aym) < S(Ylv"w\/j—l’ \/j’ Yi—i—lv""Ym)-

v

Proposition 7

. VS*ly. . . . .
f(6)=S5 (YJ — 5|Vs*|yj.||) is not unimodal, where § is a step size.

v
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Proof of the proposition 7

Figure 2: Example of the anti-gradient search
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Multiextremal local stress
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Figure 3: Example of the multiextremal local stress
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Simple realization of Geometric MDS

@ Simple realizations of Geometric MDS are based on fixing some initial
positions of points Y; = (yi1,.--,Yid), i = 1,..., m (at random, using
principal component analysis, etc.), and further changing the
positions of Y} once or several times by (5) in consecutive order from
Jj =1toj = m many times till some stop condition is met: e.g.
number of runs from j = 1 to j = m reaches some limit or the
decrease of stress function S(-) becomes less than some small
constant after two consecutive runs.

@ In the experiments for minimization of function S(-), the random
selection of a set Y of d-dimensional points was used and further
minimization of S(-) seeking for its local minimum was performed by
consecutive one-step changing of positions of points Yi,..., Y, many
times.

@ This multistart procedure was repeated several times expecting to
find a better local minimum or even the global minimum.
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Experiments (1)

@ 20 random sets Y of 30 points (m = 30) were generated inside the
4-dimensional unit hypercube (n = 4) and represented in d = 2,3,4
spaces using random start position for optimization.

@ Values in Table 1 show the minima. 11 descents among 20 ones
reached the global minimum, when d = 2. When d = 3, all descents
reached the best minimum.

Table 1: Stress value of 20 experiments for the same data set

d—2 19.146 19.146 19.146 19.146 19.146 19.146 19.146 19.146 19.146 19.146
19.146 19.154 19.214 19.214 20.584 20.584 20.584 20.792 21.453 22.479
d=3 2779 2779 2779 2779 2779 2779 2779 2779 2779 2.779
2779 2779 2779 2779 2779 2779 2779 2779 2779 2779
d—a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Experiments (2)

@ For comparison, the same 1000 data sets of 30 random 4-dimensional
points (m = 30, n = 4) were generated and analysed by Geometric
MDS and multidimensional scaling based on stress S(-) minimization
using majorization (SMACOF) that is realized in R.

@ Both Geometric MDS and SMACOF used the same initial values of
points Y1,..., Y, obtained by Torgerson Scaling.

@ When d = 2, Geometric MDS and SMACOF gave the same results in
997 cases, however the average value of S(-) is obtained a bit better
by Geometric MDS and equals 13.7570 as compared with 13.7613 by
SMACOF.

@ When d = 3, Geometric MDS gave the same results in 922 cases.
Average values of 5(+) are almost the same: 2.9789 (Geometric
MDS) and 2.9787 (SMACOF).

Gintautas Dzemyda Recent advances in data dimensionality reduction using multidimensional scaling 27 / 35



|
GeoGebra example (1)

Figure 4: Minimization of local stress function
M.Sabaliauskas, G.Dzemyda, " Visual analysis of multidimensional scaling using GeoGebra”
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GeoGebra example (2)

Figure 5: Minimization of local stress function
M.Sabaliauskas, G.Dzemyda, " Visual analysis of multidimensional scaling using GeoGebra”
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GeoGebra example (3)

Figure 6: Minimization of local stress function
M.Sabaliauskas, G.Dzemyda, " Visual analysis of multidimensional scaling using GeoGebra”
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GeoGebra example (4)

Figure 7: Minimization of local stress function
M.Sabaliauskas, G.Dzemyda, " Visual analysis of multidimensional scaling using GeoGebra”
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Conclusions (1)

@ A novel geometric interpretation of the stress function and
multidimensional scaling in general (Geometric MDS) has been
proposed.

@ According to the experiments, the realization of Geometric MDS gives
very similar results as SMACOF. The results are a bit better often.

@ These preliminary results are very promising, because the evaluated
efficiency of the Geometric MDS and the SMACOF is the same,
however Geometric MDS is much easier realizable and interpreted.

@ More sophisticated realizations of ideas presented in this paper should
be developed.
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Conclusions (2)

@ The reasons that a good performance of the proposed algorithm can
be expected as compared with other (e.g. majorization) algorithms:

@ In Geometric MDS, the step size and direction forward the minimum of
the stress function are found analytically for a separate point in a
projected space without reference to the analytical expression of the
stress function, numerical evaluation of its derivatives and the linear
search.

@ It is proved theoretically that the direction coincides with the steepest
descent direction, and the analytically found step size guarantees
almost the optimal step in this direction.

© Despite the fact that the Geometric MDS uses the simplest (raw)
stress function, there is no need for its normalization depending on the
number m of data points, the scale of features xj and proximities §;;.
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