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Abstract

Multi-criteria decision-making (MCDM) methods provide structured approaches for evaluat-
ing alternatives based on multiple conflicting criteria. However, many existing MCDM techniques
assess alternatives independently, either by aggregating weighted performance scores or by mea-
suring deviations from reference points without a comparative basis. These approaches often fail
to account for the relative nature of evaluations within the decision matrix, potentially leading to
less reliable rankings. This research introduces a novel Deviation-Based Pairwise Assessment Ratio
Technique (DEPART) for MCDM. Unlike conventional methods, DEPART evaluates alternatives
through pairwise deviation ratios, ensuring a relative and holistic assessment. By incorporating
all available decision data, this approach enhances the reliability and interpretability of rankings.
To validate its effectiveness, a simulation-aided analysis is conducted. The evaluation process in-
cludes a benchmark example, a simulation analysis with varying criteria weights, and tests on
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randomly generated datasets with different problem sizes and performance ranges. Correlation
coefficients are computed to measure consistency, while robustness is assessed using Analysis of
Means (ANOM) and confidence intervals. The results demonstrate that DEPART provides stable
and reliable rankings, making it a promising approach for solving MCDM problems.

Keywords: multi-criteria decision-making (MCDM), DEPART, simulation-aided, ANOM.

1 Introduction
Multi-criteria decision-making (MCDM) methods play a crucial role in solving complex decision

problems where multiple conflicting criteria must be considered. These methods provide a structured
framework to evaluate and prioritize alternatives based on various attributes, allowing decision-makers
to make informed choices. Over the years, numerous MCDM techniques have been developed, each
with its own methodological foundations, strengths, and limitations [1, 6, 7]. Decision-makers often
have diverse preferences and value systems, influencing how they prioritize different solutions. The
availability of multiple MCDM approaches enables decision-makers to select a method that aligns
more closely with their preferences and decision-making style [3, 8, 23]. However, beyond individual
preferences, the nature of the decision problem itself can impose constraints that limit the feasibility of
certain solutions. In many cases, some solutions may not be practically viable due to contextual com-
plexities, requiring decision-makers to seek solutions that are both logically and practically justifiable
[10, 20, 35].

MCDM problems typically lack a single absolute optimal solution because they involve multiple
conflicting criteria and objectives [22, 32]. It is often impossible to simultaneously maximize the utility
and desirability according to all criteria, as improving one aspect may lead to compromises in others.
This inherent trade-off highlights the necessity of employing diverse MCDM approaches to generate
and compare multiple viable solutions rather than searching for a singular best outcome [9, 14]. A key
consideration in MCDM is how decision matrices are constructed and interpreted. Decision matrices
contain performance evaluations of alternatives across different criteria, but these values are often
obtained relatively rather than independently. That is, the performance of an alternative on a specific
criterion may be determined in comparison to other alternatives rather than assessed in isolation
[2, 33]. This suggests that decision data should be analyzed holistically, avoiding an approach that
examines alternatives independently without considering the relative nature of evaluations within the
matrix. Ignoring the relational structure of the decision matrix can lead to incomplete assessments
and suboptimal decision outcomes [13, 35].

Methods such as Analytic Hierarchy Process (AHP), Analytic Network Process (ANP), and Best-
Worst Method (BWM) incorporate pairwise comparisons to evaluate alternatives and criteria in a
relative manner [21, 26, 29]. These approaches emphasize a comparative and holistic perspective,
ensuring that the relationships among alternatives are factored into the decision process. However,
such methods heavily rely on subjective judgments, and as the number of alternatives and criteria
increases, their practicality diminishes. Human cognitive limitations make it difficult to handle an
extensive number of pairwise comparisons, leading to potential inconsistencies and reduced efficiency
in decision-making. Methods like Simple Additive Weighting (SAW), Weighted Aggregated Sum Prod-
uct Assessment (WASPAS), and Complex Proportional Assessment (COPRAS) evaluate alternatives
based on their weighted performance scores [11, 18, 25]. These methods rely on a normalized decision
matrix and account for the type of criteria (benefit or non-benefit) to determine the final rankings.
Similarly, other techniques like Technique for Order Preference by Similarity to Ideal Solution (TOP-
SIS), VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), and Evaluation Based on
Distance from Average Solution (EDAS) assess alternatives based on their deviations from reference
points [27, 28, 34]. In these approaches, normalization is one of the few relative steps in the process,
making only a partial adjustment to the raw performance values in the decision matrix. However,
they still do not fully incorporate all available decision data in a holistic and relative manner [17, 24].
Methods based on weighted performance scores calculate the overall performance of each alternative
independently, while methods that use deviations from reference points determine the total deviation
or distance for each alternative separately, making the assessment non-relative. The present study
does not aim to provide a detailed review of these methods. Instead, readers are referred to recent



https://doi.org/10.15837/ijccc.2025.3.7038 3

survey papers in the field that comprehensively discuss the advantages and drawbacks of different
MCDM approaches [5, 16].

In this research, a novel Deviation-Based Pairwise Assessment Ratio Technique (DEPART) is
introduced to address MCDM problems from a new perspective. The proposed method is based on
the relative deviations of alternatives from reference points. Specifically, pairwise deviation ratios are
computed for the alternatives, forming the basis for their evaluation. Unlike conventional methods
that assess each alternative independently, DEPART evaluates alternatives in comparison to others.
This holistic approach ensures that the complete structure of deviations within the decision matrix is
accounted for, leading to a more reliable ranking of alternatives. By incorporating the entire set of
available information, DEPART enhances the robustness and interpretability of decision outcomes.

To assess the effectiveness of the proposed method, a comparative simulation-aided analysis is
conducted. Five well-established MCDM methods—WASPAS, COPRAS, TOPSIS, VIKOR, and
EDAS—are selected for comparison. These methods are chosen due to their demonstrated efficiency
and wide applicability in decision-making problems across various domains. Readers interested in the
theoretical and practical aspects of these methods may refer to existing literature for further details
[4, 12, 19, 30, 31]. The evaluation process follows a multi-stage approach. First, a benchmark com-
parative example is used to examine how DEPART’s results align with those of the selected methods.
Then, the same example is utilized in a simulation-aided analysis where criterion weights are varied
randomly to observe the stability of rankings. Additionally, synthetic datasets representing MCDM
problems with varying sizes (different numbers of alternatives and criteria) and different performance
ranges are generated randomly. These datasets are analyzed using both DEPART and the selected
methods, and correlation coefficients between the results are computed to assess consistency. To fur-
ther validate the robustness of DEPART, Analysis of Means (ANOM) is applied. Moreover, confidence
intervals (CIs) are computed to measure the degree of agreement between DEPART’s outcomes and
those of the selected MCDM methods under different conditions. The results of the conducted analyses
highlight the reliability and stability of the proposed method.

The remainder of this paper is organized as follows. Section 2 presents the steps of the proposed
method. In Section 3, a simple numerical example is provided to clarify the procedure for applying
the proposed method. Section 4 introduces a benchmark example to compare the results of the
proposed approach with some other MCDM methods. Section 5 evaluates the performance of DEPART
in handling MCDM problems through a simulation-aided analysis. Finally, Section 6 presents the
conclusions and future research directions.

2 Proposed method
The proposed method, DEPART (Deviation-Based Pairwise Assessment Ratio Technique), intro-

duces a novel approach to multi-criteria decision-making by emphasizing relative deviations of the
decision matrix. Unlike traditional methods such as TOPSIS and VIKOR, which evaluate each alter-
native individually based on its absolute deviations or distances from the ideal and anti-ideal solutions,
DEPART focuses on pairwise ratios of deviations. By calculating the ratio of deviations for each pair
of alternatives, this method leverages the entire deviation matrix for evaluation, rather than treating
each alternative in isolation. This comprehensive utilization of deviations enhances the robustness of
decision-making, ensuring more reliable and consistent results. The steps involved in implementing
the DEPART method are as follows.

Step 1. Define the set of criteria and alternatives for the decision-making problem. Assume there
are n alternatives (A1, A2, . . . , An) and m criteria (C1, C2, . . . , Cm). Assign a weight (wj ,j ∈
{1, 2, . . . , m}) to each criterion, representing its importance in the evaluation process.

Step 2. In this step, the decision matrix is normalized using the vector normalization method.
This approach transforms the data into a nondimensional format, allowing for meaningful comparisons
across criteria. One of the key advantages of this normalization method is that it preserves the nature
of the criteria (whether they are benefit or non-benefit criteria) and ensures that negative values or
zeros in the original data do not adversely affect the process. If xij represents the performance of
alternative i on criterion j, the normalization is carried out using the following formula:
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x′
ij = xij√∑n

i=1 x2
ij

(1)

Step 3. In this step, the elements of positive deviations matrix (DV +) and negative deviation
matrix (DV −) are calculated. The absolute deviation of each element from the best and worst possible
values in each column is determined. The following formulas are used for the calculations in this step:

dv+
ij =

∣∣∣x′
ij − t+

j

∣∣∣ (2)

dv−
ij =

∣∣∣x′
ij − t−

j

∣∣∣ (3)

where:
t+
j =

{
maxi x′

ij if j ∈ B

mini x′
ij if j ∈ N

(4)

t−
j =

{
mini x′

ij if j ∈ B

maxi x′
ij if j ∈ N

(5)

Here, B represents the set of benefit criteria, while N represents the set of non-benefit criteria.
Step 4. In this step, two pairwise matrices of the alternatives are constructed based on the

deviations obtained in the previous step: pairwise positive deviation ratio matrix (E+) and pairwise
negative deviation ratio matrix (E−). To derive the elements of these two matrices, the weighted sum
of the ratios of the deviations is calculated as follows. To ensure that ratios involving zero deviations
can also be computed while preventing excessive reductions in the impact of deviations, the maximum
positive and negative deviations are considered as reference deviations.

e+
kl =

m∑
j=1

wj

(
dv+

lj + md+

dv+
kj + md+

)
, k, l ∈ {1, 2, . . . , n} (6)

e−
kl =

m∑
j=1

wj

(
dv−

kj + md−

dv−
lj + md−

)
, k, l ∈ {1, 2, . . . , n} (7)

where:
md+ = max

i,j
dv+

ij (8)

md− = max
i,j

dv−
ij (9)

If k = l, then e+
kl = e−

kl = 1.
Step 5. In this step, the pairwise positive and negative deviation ratio matrices calculated in

the previous step are aggregated based on a parameter determined by the decision-maker (η). The
aggregated pairwise deviation ratio matrix, represented as E, is obtained through this aggregation
process. The elements of this matrix are calculated using the following relationship:

ekl = ηe+
kl + (1 − η) e−

kl, k, l ∈ {1, 2, . . . , n} (10)

By adjusting η, decision-makers can emphasize either the positive or negative deviation ratios in
the final ranking process.

Step 6. In this step, the sums of the columns of the aggregated pairwise deviation ratio matrix
obtained in the previous step are calculated. These values represent the total deviation ratio of each
alternative when compared to all other alternatives. These sums are used for determining the final
score for each alternative.

es
l =

n∑
k=1

ekl, l ∈ {1, 2, . . . , n} (11)
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Step 7. Based on the aggregated pairwise deviation ratio matrix calculated in Step 5 and the
column sums obtained in Step 6, the final score for each alternative is computed using the following
equation:

Si = 1
n

(
n∑

l=1

eil

es
l

)
(12)

The alternatives are then ranked based on their final scores, where a higher score indicates a more
favorable alternative.

3 Illustrative example
To clarify using the DEPART method, a small numerical example involving three alternatives (A1, A2,
A3) and three criteria (C1, C2, C3) is presented. The decision matrix, as shown in Table 1, incorporates
performance values, including negative and zero entries, to demonstrate the method’s robustness in
addressing such data. The type and weight of each criterion are also provided in Table 1.

Table 1: Data for the illustrative example
C1 ∈ B C2 ∈ N C3 ∈ B

w1 = 0.4 w2 = 0.3 w3 = 0.3
A1 20 0 -12
A2 35 -2 -5
A3 15 2 -17

Steps 1 and 2. Based on the decision matrix provided in Table 1, the normalized values can be
calculated as follows. [

x′
ij

]
3×3

=

 0.465 0 −0.561
0.814 −0.707 −0.234
0.349 0.707 −0794


For example:

x′
11 = 20√

202 + 352 + 152 = 0.465

x′
23 = −5√

(−12)2 + (−5)2 + (−17)2
= −0.234

Step 3. In this step, the positive (DV +) and negative (DV −) deviations matrices are calculated
using the normalized decision matrix obtained in the previous step. The process begins by determining
the best (t+

j ) and worst (t−
j ) possible values for each criterion.[

t+
j

]
1×3

=
[

0.814 −0.707 −0.234
]

[
t−
j

]
1×3

=
[

0.349 0.707 −0794
]

Then the absolute deviations of each normalized value from these values are computed as follows:

DV + =
[
dv+

ij

]
3×3

=

 0.349 0.707 0.327
0 0 0

0.465 1.414 0.561



DV − =
[
dv−

ij

]
3×3

=

 0.116 0.707 0.233
0.465 1.414 0.561

0 0 0


For example:

dv+
11 = |0.465 − 0.814| = 0.349



https://doi.org/10.15837/ijccc.2025.3.7038 6

dv+
13 = |−0.561 − (−0.234)| = 0.327

dv−
11 = |0.465 − 0.349| = 0.116

dv−
13 = |−0.561 − (−0.794)| = 0.233

Step 4. In this step, pairwise positive (E+) and negative (E−) deviation ratio matrices are con-
structed using the deviations calculated in Step 3. The elements of these matrices are derived by
computing the weighted sum of deviation ratios for each pair of alternatives, ensuring robust compar-
ison even with zero deviations. Based on the values of the deviations, the obtained values of md+ and
md− are both 1.414. It should be noted that while the two values are equal in this case, md+ and
md− can generally differ.

E+ =
[
e+

kl

]
3×3

=

 1 0.765 1.166
1.318 1 1.551
0.865 0.666 1



E− =
[
e−

kl

]
3×3

=

 1 0.801 1.232
1.251 1 1.551
0.827 0.666 1


For example:

e+
12 = 0.4

( 0 + 1.414
0.349 + 1.414

)
+ 0.3

( 0 + 1.414
0.707 + 1.414

)
+ 0.3

( 0 + 1.414
0.327 + 1.414

)
= 0.765

e+
23 = 0.4

(0.465 + 1.414
0 + 1.414

)
+ 0.3

(1.414 + 1.414
0 + 1.414

)
+ 0.3

(0.561 + 1.414
0 + 1.414

)
= 1.551

e−
21 = 0.4

(0.465 + 1.414
0.116 + 1.414

)
+ 0.3

(1.414 + 1.414
0.707 + 1.414

)
+ 0.3

(0.561 + 1.414
0.233 + 1.414

)
= 1.251

e−
31 = 0.4

( 0 + 1.414
0.116 + 1.414

)
+ 0.3

( 0 + 1.414
0.707 + 1.414

)
+ 0.3

( 0 + 1.414
0.233 + 1.414

)
= 0.827

The matrices E+ and E− are of size 3x3, where the dimensions correspond to the number of
alternatives.

Step 5. In this example, η is assumed to be 0.5, meaning that equal importance is given to both
positive and negative deviations ratios. The aggregated pairwise deviation ratio matrix E is calculated
as follows:

E = [ekl]3×3 =

 1 0.783 1.199
1.284 1 1.551
0.846 0.666 1


For example:

e13 = (0.5 × 1.166) + (0.5 × 1.232) = 1.199

e31 = (0.5 × 0.865) + (0.5 × 0.827) = 0.846

Step 6. The column sums of the aggregated pairwise deviation ratio matrix are calculated as
follows:

Es = [es
l ]1×3 =

[
3.13 2.449 3.75

]
For example:

es
1 = 1 + 1.284 + 0.846 = 3.13

Step 7. According to the values obtained in Steps 5 and 6, the final score for each alternative is
computed as follows:

S1 = 1
3

( 1
3.13 + 0.783

2.449 + 1.199
3.75

)
= 0.32

S2 = 1
3

(1.284
3.13 + 1

2.449 + 1.551
3.75

)
= 0.41



https://doi.org/10.15837/ijccc.2025.3.7038 7

S3 = 1
3

(0.846
3.13 + 0.666

2.449 + 1
3.75

)
= 0.27

Based on the computed final scores, S2 has the highest value, followed by S1. Therefore, A2
is ranked first A2 ≻ A1 ≻ A3. In this example, we intentionally selected a case where the final
ranking could also be inferred from the decision matrix. This choice was made to clearly illustrate the
step-by-step process of DEPART.

4 Comparative example
In the field of MCDM, evaluating the performance of a newly proposed method by comparing it

with widely accepted approaches is essential for assessing its validity and effectiveness. A comparative
analysis is conducted to examine the performance of DEPART against five well-established MCDM
methods: WASPAS, COPRAS, TOPSIS, VIKOR, and EDAS. These methods have been extensively
utilized in decision-making research due to their robustness, reliability, and adaptability in handling
various types of decision problems. Each of these techniques possesses distinct methodological advan-
tages, and a systematic comparison allows for assessing the alignment of DEPART’s outcomes with
those obtained from the selected methods.

To provide a comprehensive assessment, we employ a benchmark example adapted from the study
by Keshavarz Ghorabaee, et al. [17]. This example consists of 10 alternatives evaluated across 7
criteria. In this study, it is assumed that all criteria have equal importance, and therefore, a uniform
weight distribution of wj = 1/7 is considered. The details of this example are presented in Table 2.
The results of DEPART, along with those of the five selected MCDM methods, are summarized in
Table 3. To assess the consistency of the rankings, the correlation coefficients between the results of
DEPART and those of the other methods are calculated and shown in Table 3 as well.

Table 2: Data for the comparative example
C1 ∈ B C2 ∈ B C3 ∈ B C4 ∈ N C5 ∈ N C6 ∈ N C7 ∈ N

A1 23 264 2.37 0.05 167 8900 8.71
A2 20 220 2.2 0.04 171 9100 8.23
A3 17 231 1.98 0.15 192 10800 9.91
A4 12 210 1.73 0.2 195 12300 10.21
A5 15 243 2 0.14 187 12600 9.34
A6 14 222 1.89 0.13 180 13200 9.22
A7 21 262 2.43 0.06 160 10300 8.93
A8 20 256 2.6 0.07 163 11400 8.44
A9 19 266 2.1 0.06 157 11200 9.04
A10 8 218 1.94 0.11 190 13400 10.11

Table 3: Results of DEPART compared to other MCDM methods
DEPART WASPAS COPRAS TOPSIS VIKOR EDAS

A1 1 1 1 1 1 1
A2 3 2 2 3 5 3
A3 6 6 6 8 7 6
A4 10 10 10 10 10 10
A5 7 7 7 9 6 7
A6 8 8 8 6 8 8
A7 2 3 3 2 2 2
A8 4 4 4 4 3 4
A9 5 5 5 5 4 5
A10 9 9 9 7 9 9
r — 0.987 0.987 0.903 0.951 1
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All correlation values exceed 0.8, indicating a strong agreement between DEPART and the es-
tablished methods, thereby confirming its validity. Notably, the results indicate a perfect alignment
between the rankings obtained from DEPART and EDAS. Although the comparison results demon-
strate a strong alignment between DEPART and the selected MCDM methods, it is essential to
conduct additional analyses to assess whether these results are consistently replicable across different
contexts and decision-making scenarios. Such further evaluations are necessary to determine the ro-
bustness and generalizability of DEPART’s performance in varying conditions, ensuring its reliability
and validity beyond the scope of the current example.

5 Simulation-aided analysis
To evaluate how well DEPART performs across a range of diverse scenarios and decision-making

contexts, its robustness and generalizability are thoroughly analyzed through a simulation-aided anal-
ysis under varying conditions. This analysis is essential to ensure that the method’s effectiveness
remains consistent across different scenarios and decision-making contexts. The primary objective is
to evaluate how well DEPART performs when exposed to various configurations of decision problems,
which can include differences in the number of alternatives, criteria, and the characteristics of the
decision matrix itself. This enables a more thorough understanding of DEPART’s adaptability and
reliability in real-world applications. First, a simulation analysis is conducted to examine the effect
of changing criterion weights. For this purpose, the same comparative example from the previous
section is considered. A total of 1000 sets of criteria weights are generated to observe how the scores
and rankings of alternatives vary when using DEPART. Accordingly, the example is simulated 1000
times with different weight sets and solved using DEPART. The generated weights and detailed results
are provided as supplementary material in Reference [15]. Figure 1 illustrates the variations in the
scores of alternatives, showing that their scores remain fairly stable throughout the simulation process.
Similarly, Figure 2 presents the changes in alternative rankings. While some fluctuations in rankings
are observed, these variations fall within the natural range of decision-making processes.

Figure 1: Variations in the scores of alternatives

To further confirm the stability of the results, the mean rank of alternatives (MRA) and mean
score of alternatives (MSA) over all simulation runs are presented in Table 4. Additionally, the ranking
obtained using equal weights from the previous section is presented as initial ranking of alternatives.
As observed in Table 4, the ranks derived from MRA and MSA are entirely consistent with the initial
ranks, confirming the stability of DEPART’s results under varying criterion weight distributions.

The second simulation-aided analysis conducted in this research focuses on the degree of consistency



https://doi.org/10.15837/ijccc.2025.3.7038 9

Figure 2: Variations in the rank of alternatives

Table 4: Initial ranks vs. MRA and MSA for stability analysis
Initial
Rank MRA MRA

Rank MSA MSA
Rank

A1 1 1.03 1 0.110963 1
A2 3 2.982 3 0.107922 3
A3 6 6.613 6 0.0948 6
A4 10 9.892 10 0.087159 10
A5 7 6.713 7 0.094418 7
A6 8 7.776 8 0.093367 8
A7 2 2.514 2 0.10825 2
A8 4 3.707 4 0.107031 4
A9 5 4.767 5 0.105354 5
A10 9 9.006 9 0.090737 9

Table 5: Description of different datasets

Dataset No. Problem size Number
of

runs

Number
of

problems
per run

Range
of values

for
decision matrix

Number
of

alternatives

Number
of

criteria
1 10 10 10 500 [1, 10]
2 25 25 10 500 [1, 10]
3 50 50 10 500 [1, 10]
4 10 10 10 500 [10, 100]
5 25 25 10 500 [10, 100]
6 50 50 10 500 [10, 100]
7 10 10 10 500 [100, 1000]
8 25 25 10 500 [100, 1000]
9 50 50 10 500 [100, 1000]

between the results obtained by DEPART and those produced by other methods. For this analysis,
nine distinct datasets are considered. These datasets are generated with randomly assigned values for
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the weights of criteria, the types of criteria (benefit or non-benefit), and the performance values of
the alternatives, i.e., the decision matrix. To account for different sizes and complexities of decision
problems, three distinct problem sizes are defined, corresponding to small, medium, and large-scale
decision-making problems. Each dataset consists of 500 decision problems, and the simulation process
is repeated 10 times (10 runs) for each dataset. This results in a total of 5000 decision-making problems
per dataset and 45,000 decision problems across all nine datasets. The description related to different
datasets are presented in Table 5. The simulation data is provided as supplementary material in
Reference [15]. The simulation process, including data generation and problem-solving, was carried
out using MATLAB.

The results obtained from DEPART for each decision problem are compared with those of the
five selected MCDM methods (WASPAS, COPRAS, TOPSIS, VIKOR, and EDAS). The correlation
between the rankings produced by DEPART and those of the other methods is calculated to evaluate
the consistency and alignment of DEPART’s outcomes. The simulation results are analyzed based on
the correlation coefficient, which serves as a key metric for assessing the agreement between DEPART
and the established methods.

To further analyze the robustness of DEPART, the alignment of its results with those of the other
methods will be tested using the ANOM technique. ANOM is a statistical technique used to compare
the means of multiple groups or factors to identify significant differences between them. It evaluates
the group means in comparison to their overall mean at a 95% confidence level. This procedure is
particularly useful in quality control settings due to its resemblance to control charts. Points that
fall outside the upper and lower critical lines indicate significant differences from the overall mean,
highlighting groups with statistically distinct means. In the context of this study, ANOM is used
to assess the robustness of the results obtained from DEPART compared to other MCDM methods.
Each run of the simulation is treated as a separate group for the analysis. The correlation between
the results of DEPART and the other methods for each dataset is analyzed using ANOM. If the
means of the correlation coefficients in each run fall within the upper and lower critical limits, it
indicates that the results are stable and robust across different runs. This robustness check helps
ensure that DEPART’s performance is reliable and that the differences observed between methods
are statistically significant. In essence, ANOM serves as a powerful tool to validate the stability of
DEPART’s performance across varying conditions, providing further evidence of its effectiveness in
decision-making tasks. The statistical analyses related to ANOM were conducted using JMP SAS
software, and the associated analysis files are provided as supplementary material in Reference [15].

The first method analyzed for its correlation with DEPART across different datasets is WASPAS.
As depicted in Figure 3, the mean correlation values obtained from each run consistently remain within
the upper and lower decision limits of the ANOM analysis across all datasets. This indicates that the
agreement between DEPART and WASPAS is not only statistically significant but also stable under
varying decision-making conditions.

A similar trend is observed for the other four MCDM methods—COPRAS, TOPSIS, VIKOR, and
EDAS—as illustrated in Figures 4 to 7. In each case, the mean correlation values across different
runs and datasets remain well within the acceptable range, with no significant deviations beyond the
control limits. This result confirms that the consistency of DEPART’s rankings is not restricted to
a specific dataset or problem structure but rather holds across a broad spectrum of decision-making
scenarios, encompassing different numbers of alternatives, criteria, and value ranges.

The stability of correlation values across all datasets suggests that the agreement between DEPART
and the selected methods is not merely incidental. Instead, it reflects a systematic and repeatable
pattern, reinforcing the robustness of DEPART in comparison to established MCDM techniques. The
ability of DEPART to maintain a high degree of consistency across multiple simulations demonstrates
that its decision-making performance remains reliable even when subjected to significant variations
in problem size and data characteristics. This robustness is a key factor in validating DEPART as a
practical and dependable tool for real-world decision-making problems, ensuring that its rankings are
both reproducible and resilient to changes in the decision environment.

To further assess the strength of the correlation coefficients between DEPART and the selected
MCDM methods, confidence intervals were calculated at a 95% confidence level. These intervals
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Figure 3: ANOM analysis of correlation between DEPART and WASPAS

Figure 4: ANOM analysis of correlation between DEPART and COPRAS

provide an estimate of the range within which the mean of the correlation values is expected to fall,
offering a measure of the statistical reliability of the observed results. A narrower CI indicates greater
precision in the correlation estimate, while a wider CI suggests more variability across different runs.

The confidence intervals for the correlation coefficients were computed using Minitab software and
are presented in Tables 6 to 8. Table 6 reports the CI values for datasets with decision matrix values
in the range of [1,10] (Datasets 1 to 3). Table 7 provides the CI values for datasets with values in the
range of [10,100] (Datasets 4 to 6), and Table 8 presents the CI results for datasets with values in the
range of [100,1000] (Datasets 7 to 9). These confidence intervals offer further validation of DEPART’s
consistency by demonstrating that the correlation values remain statistically significant across varying
problem scales and data distributions.



https://doi.org/10.15837/ijccc.2025.3.7038 12

Figure 5: ANOM analysis of correlation between DEPART and TOPSIS

Figure 6: ANOM analysis of correlation between DEPART and VIKOR

As shown in the tables, the CI values for the correlation between DEPART and WASPAS con-
sistently indicate that the mean correlation coefficient is above 0.9. A similar trend is observed for
TOPSIS, where the mean correlation remains consistently above 0.9 across all datasets. For COPRAS,
the mean correlation with DEPART exceeds 0.95 in all cases, further confirming the strong alignment
between these two methods. Although the correlation with VIKOR is somewhat lower compared to
other methods, the mean value still remains above 0.7, indicating a strong relationship. Additionally,
the mean correlation between DEPART and EDAS consistently exceeds 0.96, with many cases show-
ing values above 0.99. This finding reinforces the exceptionally high similarity between DEPART and
EDAS, which was also observed in the comparative example discussed earlier.

It is important to note that the CI values are reported up to three decimal places in the tables,
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Figure 7: ANOM analysis of correlation between DEPART and EDAS

Table 6: CI for correlation coefficients in datasets with values within [1, 10]
Problem size Runs WASPAS COPRAS TOPSIS VIKOR EDAS

10

1 (0.910, 0.922) (0.952, 0.959) (0.908, 0.921) (0.790, 0.813) (0.970, 0.975)
2 (0.912, 0.924) (0.959, 0.966) (0.915, 0.928) (0.801, 0.823) (0.971, 0.977)
3 (0.914, 0.926) (0.959, 0.966) (0.908, 0.921) (0.812, 0.835) (0.973, 0.979)
4 (0.909, 0.921) (0.956, 0.963) (0.901, 0.914) (0.790, 0.813) (0.967, 0.973)
5 (0.913, 0.925) (0.952, 0.959) (0.911, 0.924) (0.797, 0.820) (0.969, 0.975)
6 (0.913, 0.925) (0.955, 0.962) (0.910, 0.923) (0.810, 0.833) (0.969, 0.975)
7 (0.913, 0.925) (0.955, 0.962) (0.905, 0.918) (0.809, 0.832) (0.969, 0.975)
8 (0.910, 0.922) (0.957, 0.965) (0.907, 0.920) (0.792, 0.815) (0.969, 0.974)
9 (0.915, 0.927) (0.957, 0.964) (0.911, 0.924) (0.805, 0.828) (0.971, 0.976)
10 (0.909, 0.922) (0.952, 0.959) (0.909, 0.922) (0.804, 0.826) (0.971, 0.976)

25

1 (0.926, 0.932) (0.980, 0.982) (0.939, 0.944) (0.779, 0.795) (0.986, 0.987)
2 (0.924, 0.931) (0.980, 0.982) (0.938, 0.943) (0.774, 0.790) (0.985, 0.987)
3 (0.925, 0.931) (0.979, 0.981) (0.936, 0.942) (0.772, 0.789) (0.986, 0.988)
4 (0.930, 0.936) (0.979, 0.981) (0.935, 0.941) (0.772, 0.789) (0.986, 0.988)
5 (0.926, 0.932) (0.980, 0.981) (0.938, 0.943) (0.778, 0.794) (0.986, 0.988)
6 (0.926, 0.933) (0.980, 0.982) (0.937, 0.942) (0.765, 0.781) (0.986, 0.987)
7 (0.926, 0.933) (0.980, 0.982) (0.938, 0.943) (0.765, 0.781) (0.986, 0.988)
8 (0.929, 0.936) (0.980, 0.982) (0.936, 0.942) (0.772, 0.788) (0.986, 0.988)
9 (0.927, 0.933) (0.980, 0.982) (0.938, 0.943) (0.770, 0.786) (0.986, 0.988)
10 (0.927, 0.933) (0.980, 0.982) (0.936, 0.942) (0.771, 0.787) (0.986, 0.988)

50

1 (0.931, 0.935) (0.988, 0.989) (0.947, 0.950) (0.734, 0.747) (0.990, 0.991)
2 (0.932, 0.936) (0.988, 0.989) (0.947, 0.950) (0.730, 0.744) (0.990, 0.991)
3 (0.934, 0.938) (0.988, 0.989) (0.948, 0.952) (0.737, 0.750) (0.991, 0.992)
4 (0.933, 0.937) (0.988, 0.989) (0.948, 0.951) (0.742, 0.756) (0.991, 0.992)
5 (0.931, 0.935) (0.987, 0.988) (0.946, 0.949) (0.738, 0.752) (0.990, 0.991)
6 (0.934, 0.938) (0.988, 0.989) (0.947, 0.950) (0.736, 0.749) (0.991, 0.992)
7 (0.933, 0.937) (0.987, 0.988) (0.948, 0.951) (0.740, 0.754) (0.991, 0.992)
8 (0.933, 0.937) (0.988, 0.989) (0.948, 0.951) (0.739, 0.752) (0.990, 0.991)
9 (0.935, 0.939) (0.988, 0.989) (0.948, 0.951) (0.736, 0.750) (0.990, 0.991)
10 (0.934, 0.938) (0.988, 0.989) (0.948, 0.951) (0.740, 0.754) (0.991, 0.992)

which results in some values appearing identical. Detailed results of the analyses are available as
supplementary material in Reference [15].

To examine variations in correlation values, the pooled standard deviation was computed for each
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Table 7: CI for correlation coefficients in datasets with values within [10, 100]
Problem size Runs WASPAS COPRAS TOPSIS VIKOR EDAS

10

1 (0.931, 0.941) (0.963, 0.969) (0.913, 0.926) (0.813, 0.836) (0.973, 0.978)
2 (0.925, 0.935) (0.958, 0.965) (0.907, 0.920) (0.799, 0.822) (0.971, 0.976)
3 (0.927, 0.937) (0.958, 0.964) (0.906, 0.919) (0.805, 0.828) (0.970, 0.975)
4 (0.926, 0.937) (0.959, 0.966) (0.908, 0.921) (0.800, 0.823) (0.972, 0.977)
5 (0.928, 0.938) (0.958, 0.965) (0.911, 0.923) (0.809, 0.832) (0.972, 0.977)
6 (0.928, 0.938) (0.961, 0.967) (0.912, 0.925) (0.796, 0.819) (0.971, 0.976)
7 (0.931, 0.941) (0.962, 0.968) (0.910, 0.923) (0.806, 0.828) (0.972, 0.977)
8 (0.926, 0.936) (0.960, 0.966) (0.912, 0.925) (0.799, 0.822) (0.972, 0.977)
9 (0.932, 0.942) (0.962, 0.968) (0.909, 0.922) (0.796, 0.819) (0.973, 0.978)
10 (0.927, 0.937) (0.958, 0.964) (0.907, 0.920) (0.803, 0.826) (0.973, 0.978)

25

1 (0.942, 0.946) (0.982, 0.983) (0.939, 0.945) (0.782, 0.797) (0.987, 0.988)
2 (0.941, 0.946) (0.981, 0.983) (0.937, 0.942) (0.780, 0.796) (0.987, 0.988)
3 (0.940, 0.945) (0.981, 0.983) (0.938, 0.943) (0.786, 0.801) (0.986, 0.988)
4 (0.940, 0.945) (0.982, 0.983) (0.937, 0.942) (0.779, 0.794) (0.987, 0.989)
5 (0.941, 0.946) (0.981, 0.982) (0.935, 0.941) (0.776, 0.792) (0.986, 0.988)
6 (0.941, 0.946) (0.982, 0.984) (0.937, 0.942) (0.776, 0.791) (0.987, 0.989)
7 (0.938, 0.943) (0.982, 0.984) (0.939, 0.944) (0.778, 0.793) (0.987, 0.988)
8 (0.942, 0.947) (0.981, 0.983) (0.935, 0.941) (0.783, 0.798) (0.987, 0.988)
9 (0.943, 0.948) (0.982, 0.983) (0.938, 0.944) (0.780, 0.795) (0.987, 0.988)
10 (0.941, 0.946) (0.982, 0.983) (0.936, 0.942) (0.782, 0.797) (0.987, 0.988)

50

1 (0.946, 0.949) (0.989, 0.990) (0.948, 0.951) (0.758, 0.771) (0.991, 0.992)
2 (0.946, 0.950) (0.989, 0.990) (0.948, 0.951) (0.752, 0.765) (0.991, 0.992)
3 (0.946, 0.949) (0.989, 0.990) (0.948, 0.951) (0.761, 0.774) (0.991, 0.992)
4 (0.948, 0.951) (0.989, 0.990) (0.947, 0.950) (0.753, 0.766) (0.991, 0.992)
5 (0.946, 0.950) (0.989, 0.990) (0.948, 0.951) (0.754, 0.767) (0.991, 0.992)
6 (0.947, 0.950) (0.989, 0.990) (0.949, 0.952) (0.748, 0.761) (0.991, 0.992)
7 (0.947, 0.950) (0.989, 0.990) (0.949, 0.952) (0.751, 0.764) (0.991, 0.992)
8 (0.947, 0.950) (0.989, 0.990) (0.949, 0.952) (0.754, 0.767) (0.991, 0.992)
9 (0.948, 0.951) (0.989, 0.990) (0.949, 0.952) (0.751, 0.763) (0.991, 0.992)
10 (0.947, 0.950) (0.989, 0.990) (0.948, 0.951) (0.751, 0.764) (0.991, 0.992)

dataset and method, as shown in Table 9. This measure provides a single estimate of standard
deviation across multiple independent runs, offering a comprehensive view of variability. As observed,
the standard deviation decreases with an increasing number of alternatives and criteria, indicating
greater stability in larger decision problems. This reduction is also somewhat noticeable with wider
value ranges. Additionally, the pooled standard deviation for EDAS is notably lower than that of
other methods, whereas VIKOR exhibits the highest standard deviation, reflecting greater variation
in its correlation values.

6 Conclusions
This research introduced the Deviation-Based Pairwise Assessment Ratio Technique (DEPART)

as a novel approach to multi-criteria decision-making (MCDM). By considering deviation ratios in a
pairwise manner, DEPART offers an evaluation framework that captures the relative nature of as-
sessments within the decision matrix. This approach allows for a more comprehensive analysis by
incorporating all available decision data, leading to improved ranking reliability. To validate the ef-
fectiveness of DEPART, a comprehensive series of simulation-aided analyses were performed. The
first validation step involved a comparative example, which revealed that DEPART’s results closely
align with those of well-established MCDM techniques, particularly EDAS. This suggests that DE-
PART can be used interchangeably with traditional methods while offering distinct advantages in
terms of relative and holistic assessments. The second validation involved a simulation study where
criteria weights were varied, and it was found that DEPART’s rankings remained stable across differ-
ent weighting scenarios, highlighting its adaptability and robustness under different decision contexts.
Furthermore, a large-scale experiment involving 45,000 randomly generated decision problems con-
firmed DEPART’s consistency in providing reliable rankings across diverse problem structures and
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Table 8: CI for correlation coefficients in datasets with values within [100, 1000]
Problem size Runs WASPAS COPRAS TOPSIS VIKOR EDAS

10

1 (0.930, 0.939) (0.960, 0.966) (0.914, 0.927) (0.808, 0.832) (0.971, 0.976)
2 (0.927, 0.936) (0.959, 0.965) (0.912, 0.925) (0.803, 0.827) (0.970, 0.975)
3 (0.929, 0.939) (0.961, 0.967) (0.909, 0.922) (0.792, 0.816) (0.971, 0.976)
4 (0.931, 0.941) (0.960, 0.966) (0.908, 0.921) (0.800, 0.823) (0.971, 0.976)
5 (0.931, 0.940) (0.960, 0.967) (0.913, 0.926) (0.800, 0.824) (0.970, 0.976)
6 (0.929, 0.938) (0.960, 0.967) (0.909, 0.922) (0.802, 0.825) (0.972, 0.978)
7 (0.931, 0.941) (0.960, 0.967) (0.911, 0.924) (0.798, 0.821) (0.970, 0.975)
8 (0.930, 0.940) (0.961, 0.967) (0.905, 0.918) (0.799, 0.823) (0.973, 0.979)
9 (0.931, 0.941) (0.958, 0.964) (0.913, 0.926) (0.796, 0.820) (0.973, 0.979)
10 (0.930, 0.940) (0.962, 0.968) (0.911, 0.924) (0.805, 0.828) (0.972, 0.977)

25

1 (0.944, 0.949) (0.982, 0.983) (0.937, 0.943) (0.780, 0.796) (0.986, 0.988)
2 (0.944, 0.948) (0.982, 0.984) (0.936, 0.941) (0.777, 0.792) (0.987, 0.989)
3 (0.945, 0.949) (0.981, 0.983) (0.938, 0.943) (0.776, 0.792) (0.987, 0.989)
4 (0.943, 0.948) (0.982, 0.983) (0.937, 0.943) (0.784, 0.799) (0.986, 0.988)
5 (0.943, 0.948) (0.982, 0.984) (0.938, 0.943) (0.788, 0.804) (0.987, 0.988)
6 (0.944, 0.948) (0.982, 0.983) (0.936, 0.942) (0.780, 0.796) (0.987, 0.989)
7 (0.943, 0.947) (0.981, 0.983) (0.936, 0.942) (0.777, 0.792) (0.987, 0.989)
8 (0.942, 0.947) (0.981, 0.983) (0.936, 0.942) (0.770, 0.785) (0.987, 0.988)
9 (0.942, 0.947) (0.982, 0.984) (0.937, 0.943) (0.776, 0.792) (0.986, 0.988)
10 (0.943, 0.948) (0.982, 0.984) (0.937, 0.942) (0.779, 0.795) (0.986, 0.988)

50

1 (0.948, 0.951) (0.989, 0.990) (0.949, 0.952) (0.753, 0.766) (0.991, 0.992)
2 (0.949, 0.952) (0.989, 0.990) (0.950, 0.953) (0.753, 0.766) (0.992, 0.993)
3 (0.949, 0.952) (0.989, 0.990) (0.949, 0.953) (0.752, 0.765) (0.991, 0.992)
4 (0.948, 0.951) (0.989, 0.990) (0.948, 0.951) (0.754, 0.766) (0.991, 0.992)
5 (0.949, 0.952) (0.989, 0.990) (0.948, 0.952) (0.753, 0.766) (0.991, 0.992)
6 (0.947, 0.950) (0.989, 0.990) (0.949, 0.952) (0.755, 0.768) (0.991, 0.992)
7 (0.949, 0.952) (0.989, 0.990) (0.950, 0.953) (0.754, 0.767) (0.991, 0.992)
8 (0.948, 0.951) (0.989, 0.990) (0.948, 0.951) (0.755, 0.768) (0.991, 0.992)
9 (0.948, 0.951) (0.989, 0.990) (0.948, 0.951) (0.754, 0.767) (0.991, 0.992)
10 (0.949, 0.952) (0.989, 0.990) (0.950, 0.953) (0.757, 0.770) (0.991, 0.992)

Table 9: Pooled standard deviations of correlation values
Dataset No. WASPAS COPRAS TOPSIS VIKOR EDAS

1 0.06904 0.04070 0.07457 0.12966 0.03226
2 0.03554 0.01074 0.03190 0.09257 0.00923
3 0.02257 0.00429 0.01872 0.07769 0.00455
4 0.05749 0.03658 0.07332 0.13055 0.02935
5 0.02796 0.00986 0.03187 0.08743 0.00891
6 0.01804 0.00385 0.01773 0.07299 0.00433
7 0.05588 0.03638 0.07423 0.13356 0.03008
8 0.02662 0.00970 0.03153 0.08933 0.00901
9 0.01738 0.00381 0.01800 0.07344 0.00431

varying data distributions. In addition to these validation efforts, statistical stability was rigorously
assessed using Analysis of Means (ANOM), which demonstrated that the correlations between DE-
PART and the selected MCDM methods stayed within acceptable decision limits across all datasets.
Confidence interval analyses further reinforced the alignment between DEPART and other MCDM
methods, showing a strong agreement in decision-making results. Notably, an examination of pooled
standard deviations indicated that DEPART’s rankings become more stable as the size and complex-
ity of the decision problems increase. This suggests that DEPART is not only effective in small-scale
problems but also excels in handling larger and more complex decision-making scenarios.

Several important directions for further research can be explored. One promising direction is the
application of DEPART to real-world decision-making problems in diverse fields such as supplier evalu-
ation, employee performance assessment, and energy resource management. These areas would benefit
from DEPART’s ability to account for relative performance of alternatives, making it a powerful tool
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for practical decision support. Additionally, extending DEPART to uncertain environments, such
as fuzzy and probabilistic decision settings, would significantly enhance its applicability in scenarios
where uncertainty and imprecision play a critical role in decision-making. Another potential area of de-
velopment is the exploration of computational improvements to streamline DEPART’s implementation
in large-scale decision problems. This could involve optimizing the assessment process or developing
hybrid models that combine DEPART with other advanced MCDM methods for improved efficiency
and scalability. Furthermore, comparisons with other emerging MCDM techniques, especially those
designed for big data environments, would be valuable in assessing DEPART’s relative strengths and
weaknesses in handling complex decision problems. Lastly, future research could focus on developing
user-friendly tools and software to facilitate the adoption of DEPART in practical applications. By
making the method more accessible to decision-makers across various industries, DEPART could be-
come a standard tool for addressing multi-criteria decision-making challenges, helping to drive more
informed and reliable decisions in both academic and real-world settings.
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