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Abstract

This paper proposes a novel Multi-modal Attention and Dynamic Memory Network (MADMN)
model for early mortality risk prediction based on Electronic Medical Records (EMRs). The model
integrates multi-modal feature extraction, cross-modal attention fusion, and dynamic memory net-
works within a unified framework to process structured, time-series, and textual data. MADMN
effectively captures complex temporal dependencies and multimodal interactions, enhancing predic-
tion accuracy and interpretability. Experimental results demonstrate that MADMN significantly
outperforms traditional machine learning and deep learning baselines in terms of Accuracy, F1
Score, and ROC-AUC. Furthermore, SHAP analysis validates the model’s interpretability by high-
lighting key features contributing to predictions. The model also supports counterfactual analysis,
enabling personalized treatment decisions and resource optimization. MADMN offers a robust and
interpretable solution for multimodal medical data analysis and risk prediction, paving the way for
advancements in precision medicine.
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Electronic Medical Records, Risk Prediction

1 Introduction
Electronic Medical Records (EMRs) have become a core component of modern healthcare systems,

providing critical support for patient information management and clinical decision-making. EMRs
store a wide range of data, including demographic information, laboratory test results, diagnostic re-
ports, and treatment histories. They also contain multimodal data such as medical images and clinical
notes, which are instrumental in disease diagnosis, treatment planning, and risk prediction. Partic-
ularly in intensive care settings, EMR-based risk prediction systems play a vital role in identifying
high-risk patients and enabling early interventions, thereby reducing mortality rates and optimizing
healthcare resource allocation.



The rapid advancement of machine learning and deep learning technologies has significantly im-
proved the accuracy and efficiency of EMR data analysis, enabling the processing of complex medical
data that was previously infeasible [1][2][3]. However, the multimodal and dynamic characteristics of
EMR data present considerable challenges for modeling and interpretability. One of the primary chal-
lenges in risk prediction lies in the complexity of multimodal data. EMRs typically consist of structured
data, time-series data, and unstructured text, each with distinct statistical properties and analytical
requirements. For instance, laboratory test results are often stored in structured formats, physiolog-
ical monitoring data exhibit temporal dynamics, and clinical notes are recorded as unstructured free
text. Effectively integrating these heterogeneous data types to capture their latent relationships and
complementary information is critical for improving model performance. Additionally, diseases often
progress dynamically, and patients’ health statuses evolve over time. This necessitates models that
not only capture long-term dependencies but also reflect short-term fluctuations to accurately predict
disease progression.

In addition to data complexity, a lack of model interpretability poses another major challenge.
Although deep learning models have demonstrated remarkable performance in risk prediction tasks,
their complex and opaque structures—often referred to as "black boxes"—limit clinicians’ ability to
understand and trust the predictions [4] [5] [6]. In clinical applications, decision-making depends
not only on predictive accuracy but also on the ability to explain the rationale behind predictions,
supporting transparent and informed diagnoses and treatment plans. Consequently, developing risk
prediction models with interpretable outputs has emerged as a critical research priority. Moreover,
current methods often lack sufficient capabilities for modeling interactions among multimodal data and
extracting dynamic features, leading to limitations in prediction comprehensiveness and adaptability.

Despite the progress made in EMR-based risk prediction, several limitations remain. First, many
existing models focus on analyzing single data modalities, such as structured data or time-series data,
neglecting the interactions between modalities. For example, neural network models based solely on
structured data may perform well for specific tasks but fail to leverage potential insights from text
and time-series data [7] [8] . Second, while some approaches incorporate dynamic modeling, their
ability to capture temporal dependencies remains limited. Traditional regression models and static
machine learning methods are inherently incapable of modeling temporal dynamics, and although
recurrent neural networks (RNNs) and long short-term memory (LSTM) networks have improved
upon this, they still lack mechanisms for effectively integrating multimodal data, thereby constraining
their predictive performance[9].

Moreover, poor interpretability limits the clinical applicability of current models. Although some
studies have explored anomaly detection and medical data processing techniques using deep learning,
these methods often lack transparency, leaving clinicians unable to comprehend the reasoning behind
model decisions. This lack of interpretability is particularly problematic in high-risk scenarios, such
as cardiovascular disease prediction, where high accuracy alone is insufficient to meet clinical demands
for reliability and explainability.

To address these challenges, this paper proposes a novel model that integrates a cross-modal at-
tention mechanism with a dynamic memory network (DMN) to overcome the shortcomings of existing
approaches. First, the model dynamically learns interactions between multimodal data through cross-
modal attention, effectively leveraging complementary information from structured data, time-series
data, and text data. Second, it models the temporal evolution of patients’ conditions using a dynamic
memory network, capturing both long-term dependencies and short-term fluctuations to enhance pre-
diction performance and time sensitivity. Additionally, interpretable analysis tools are incorporated
to improve model transparency and clinical usability.

The proposed approach offers several key advantages. First, it supports multimodal feature fu-
sion within a unified analytical framework, enabling the integration of structured, time-series, and
textual data to exploit their complementary relationships. Second, the model dynamically identifies
critical features and adapts to complex disease progression patterns, improving its ability to process
temporal dynamics. Furthermore, by providing interpretable analysis alongside risk predictions, the
model enhances transparency and reliability, helping clinicians understand the predictions and make
well-informed decisions. These features make the model particularly suitable for real-world medical



applications.
The main contributions of this paper are as follows: (1) It designs a novel model that combines

a cross-modal attention mechanism and a dynamic memory network to analyze multimodal data and
predict dynamic risks; (2) It provides a unified framework for modeling multimodal data, addressing
challenges related to data fusion and temporal dynamics; and (3) It demonstrates, through extensive
experiments, that the proposed model achieves superior performance in mortality risk prediction tasks,
offering high accuracy and strong interpretability for clinical decision support.

2 Related Works
EMRs contain diverse types of data that collectively reflect a patient’s health status and disease

progression. To build comprehensive risk prediction models, it is essential to effectively utilize the
complementary information embedded in these data modalities. EMR data can generally be cate-
gorized into three primary types: image data, time-series and trajectory data, and structured and
text data. Each modality serves a distinct purpose in clinical analysis. Image data, such as CT and
MRI scans, provide visual representations of anatomical structures and pathological changes, enabling
direct identification of lesions or abnormalities. Time-series and trajectory data capture dynamic
changes in physiological signals over time, offering insights into disease progression and treatment
responses. Structured and text data, including demographic information, diagnostic codes, labora-
tory results, and clinical notes, contain detailed patient histories and contextual information that
support decision-making. By reviewing these three data modalities, this section aims to highlight
their respective contributions to EMR-based risk prediction and discuss existing approaches for their
integration and analysis. This categorization also lays the foundation for understanding the challenges
and opportunities in multi-modal data fusion, as addressed in subsequent sections.

2.1 Image-Based Risk Prediction

Image data analysis has become a critical approach in electronic medical record (EMR)-based risk
prediction. Leveraging the outstanding performance of deep learning and machine learning models,
significant progress has been made in medical image analysis, particularly in disease classification,
lesion detection and segmentation, and model optimization. Recent studies have focused on predicting
prognosis and molecular classifications of cancers. For example, Foersch et al. [10] and Fremond et
al. [11] employed deep learning techniques to analyze cancer images, effectively predicting colorectal
and endometrial cancer outcomes. These studies highlight the potential of deep learning for complex
image analysis, offering novel methods for disease risk prediction and personalized treatment planning.

In lesion detection and segmentation, Saeedi et al. [12] proposed a convolutional neural network
(CNN)-based model that successfully identified the location and size of brain tumors, providing insights
for early detection and intervention. Similarly, Curila et al. [13] combined statistical methods with
edge-based segmentation techniques to process CT images of COVID-19 infections, enhancing the
precision of lesion detection. These studies demonstrate the potential of integrating deep learning with
traditional image processing techniques, particularly for complex lesion detection tasks. Furthermore,
Mahmood et al. [14] utilized MRI images to detect acute knee injuries, offering new technical support
for sports injury diagnosis and prediction.

Recent research has also focused on model optimization and performance improvement. Vrbančič
et al. [15] optimized CNN hyperparameters, significantly improving the accuracy of COVID-19 classi-
fication from X-ray images. Singh et al. [16] explored explainable deep learning approaches to enhance
transparency and interpretability in medical image retrieval, providing higher trustworthiness for clin-
ical applications. Additionally, Babu et al. [17] proposed an optimized CNN-based approach for brain
tumor segmentation and classification, leveraging artificial bee colony optimization and thresholding
techniques to improve segmentation accuracy and computational efficiency. Similarly, Lee et al. [18]
applied AI-based abdominal CT measurements to predict mortality and cardiometabolic disease risk,
demonstrating the potential of AI in improving disease risk assessment through advanced imaging
analysis. These studies highlight ongoing efforts to refine machine learning models, optimizing them
for better clinical applicability and prediction accuracy.



Despite these advances, several challenges remain. First, the acquisition and annotation of medical
imaging data are costly, resulting in limited training datasets and reduced model generalizability. Sec-
ond, although explainable artificial intelligence techniques have been developed, most deep learning
models still lack sufficient transparency, limiting the trust clinicians place in their predictions. More-
over, multimodal data integration is relatively underexplored, as most studies rely solely on single-
modal image data without incorporating text, time-series, or genomic data available in EMRs. This
limits the comprehensive performance of prediction models. Finally, the lack of large-scale clinical
validation affects the generalizability and applicability of these methods. While many models per-
form well in experimental settings, their adaptability and stability in real-world environments require
further evaluation.

2.2 Sequence-Based Risk Prediction

Time-series and trajectory data analysis play a vital role in EMR-based risk prediction by capturing
patients’ evolving health conditions over time. These methods uncover disease progression patterns
and provide scientific support for early detection and personalized interventions. Advances in deep
learning and machine learning technologies have further improved the accuracy and applicability of
time-series data analysis.

Placido et al. [19] developed a deep learning algorithm to analyze patient trajectories and predict
pancreatic cancer risk. By leveraging long-term EMR data, the model identified critical milestones in
disease progression, enabling early detection and intervention. This study emphasizes the importance
of trajectory data for understanding complex diseases and demonstrates the ability of machine learning
models to process high-dimensional time-series data effectively.

Forrest et al. [20] further validated the potential of time-series data. They developed a prediction
model for coronary artery disease using longitudinal data and tested it on two long-term follow-up
cohorts. The study showcased the practical value of time-series analysis for chronic disease moni-
toring and highlighted the importance of long-term data accumulation for training risk prediction
models. Similarly, Morid et al. [9] explored time-series forecasting methods, employing recurrent
neural networks (RNNs) and long short-term memory (LSTM) networks to capture complex temporal
dependencies, achieving improved stability and reliability in predictions.

Beyond disease risk prediction, time-series analysis has demonstrated effectiveness in chronic dis-
ease management and real-time monitoring. For example, Haque et al. [4] employed enhanced neural
networks to analyze diagnostic records and successfully predict asthma onset risks. Yuantai [6] pro-
posed an intelligent wearable system based on a discrete chaotic fuzzy neural network to monitor
health status and activity patterns in real time, providing a new technological direction for person-
alized health management. Beyond disease risk prediction, time-series analysis has demonstrated
effectiveness in chronic disease management and real-time monitoring. For example, Haque et al. [4]
employed enhanced neural networks to analyze diagnostic records and successfully predict asthma
onset risks. Yuantai [6] proposed an intelligent wearable system based on a discrete chaotic fuzzy neu-
ral network (DC-FNN) to monitor health status and activity patterns in real time, providing a new
technological direction for personalized health management. Renc et al. [21] introduced a zero-shot
health trajectory prediction model using transformers, a novel approach that leverages the power of
deep learning to predict future health trajectories without the need for labeled training data, offering
new possibilities for personalized healthcare. Yang et al. [22] applied deep reinforcement learning
to optimize fairness and bias control in machine learning models, improving clinical decision support
stability and adaptability. Additionally, Aminizadeh et al. [7] investigated distributed computing and
IoT-based frameworks, demonstrating the potential of time-series data in large-scale medical networks.

Despite these achievements, challenges remain. EMR time-series data often suffer from missing
values, inconsistent records, and noise, which pose threats to model training and prediction accuracy.
Although deep learning models excel at capturing complex temporal dependencies, their lack of inter-
pretability continues to limit clinical applications. Transparent algorithms are needed to help clinicians
and patients understand the logic behind predictions. Furthermore, multimodal data integration re-
mains underdeveloped, as most studies focus on single-type time-series data while overlooking text,
imaging, and genomic data, constraining the models’ comprehensiveness in risk evaluation.



2.3 Text-Based Risk Prediction

Structured and text data analysis represents an essential research direction in EMR-based risk
prediction, focusing on extracting and analyzing demographic information, diagnostic codes, labora-
tory results, and clinical notes. These data contain detailed records of patients’ medical histories and
treatment processes. By leveraging machine learning and natural language processing (NLP) tech-
niques, valuable information can be mined to support disease risk prediction and personalized health
management.

Feng et al. [8] developed an automated ICD-11 coding model that transforms medical text into
structured classification data, improving EMR management efficiency. This approach reduces manual
coding workload while enhancing prediction reliability through standardized processing. Similarly,
Kim et al. [5] proposed a deep learning-based algorithm to detect anomalies and manipulations in
medical data, strengthening EMR security and integrity and ensuring the reliability of data analysis.

For risk prediction, Pfob et al. [23] built a machine learning model that combined patient-reported
outcomes with structured medical data to predict one-year follow-up outcomes after breast cancer
surgery. This approach integrates subjective feedback with objective medical data, offering new in-
sights into post-operative risk assessment. Oh [3] explored big data analytics for hyperlipidemia
diagnosis, leveraging structured diagnostic test results and laboratory data to improve early disease
identification. Yashudas et al. [24] proposed a cardiovascular disease prediction system based on
IoT networks, combining structured EMR data with real-time monitoring to provide dynamic risk
assessments and personalized treatment recommendations.

In distributed data processing and multi-source data integration, Aminizadeh et al. [7] investigated
distributed computing and IoT frameworks for medical data processing, highlighting their potential for
remote monitoring and intelligent health management. Haque et al. [4] demonstrated the practicality
of structured data in chronic disease management by predicting asthma risks using advanced neural
network algorithms. Moreover, Wan and Tian [25] proposed a novel machine learning approach for user
stress detection using social media text, opening new possibilities for integrating external data sources
into health risk prediction systems. Similarly, Zhu et al. [26] identified proteomic signatures of healthy
dietary patterns associated with lower risks of chronic diseases and mortality, further underscoring the
importance of integrating diverse data types in comprehensive health risk prediction.

Despite the potential of structured and text data analysis, several challenges remain. Text data
often lack standardization, and semantic understanding depends heavily on context and medical ter-
minology, posing high demands on NLP models. Moreover, EMR data frequently contain missing
values and redundant information, affecting model training and predictive performance. Additionally,
large-scale text data processing requires substantial computational resources, and increasing model
complexity often compromises interpretability, potentially limiting clinical adoption.

2.4 Literature Review Summary

Recent studies have made significant progress in leveraging EMR data for disease risk prediction,
including image analysis, time-series modeling, and structured and text data interpretation. Image
data analysis has shown promise in disease classification and lesion detection, but challenges such
as high data acquisition costs, limited interpretability, and insufficient integration with other data
types remain barriers to broader applicability [27]. Time-series modeling effectively captures tem-
poral dependencies and disease trajectories, yet issues like data quality, missing values, and poor
interpretability restrict clinical adoption [28, 29]. Structured and text data provide rich contextual
information for risk prediction but face challenges related to standardization, semantic ambiguity, and
computational complexity in large-scale processing [30].

Despite these advancements, limitations persist. Many methods focus on single-modality data,
overlooking interactions between modalities. Multimodal data fusion, which integrates visual, tem-
poral, and textual features, is still underdeveloped. Additionally, while deep learning models achieve
high predictive accuracy, their lack of interpretability reduces clinical usability [31].



3 Methodology

3.1 Overall Framework

This paper proposes an innovative Multi-modal Attention and Dynamic Memory Network (MADMN)
for early mortality risk prediction based on EMRs. MADMN integrates multi-modal feature extrac-
tion, cross-modal attention mechanisms, and DMNs into a unified modeling framework. It effectively
processes heterogeneous medical data while capturing the dynamic evolution of a patient’s condition
over time. Moreover, the model enhances its representation capacity for complex clinical data through
dynamic interactions among multi-modal features, thereby improving prediction accuracy and inter-
pretability.

The overall framework consists of four core modules: multi-modal feature extraction, cross-modal
attention fusion, dynamic memory modeling, and risk prediction output. Multi-modal data is first
processed using specialized techniques for each modality—structured features are extracted using a
variational autoencoder (VAE), time-series data is modeled through a time-aware transformer, and
textual information is embedded using ClinicalBERT. These features are then integrated via a cross-
modal attention mechanism that dynamically highlights important relationships across modalities.
The dynamic memory network captures temporal dependencies and short-term fluctuations, providing
a refined representation for risk prediction. Finally, a fully connected layer outputs mortality risk
scores, enabling accurate and interpretable assessments.

Key innovations of MADMN include its ability to integrate multi-modal data through cross-modal
attention and dynamically model temporal patterns using memory networks, distinguishing it from
prior works. It also enhances interpretability through SHAP analysis and counterfactual reasoning,
offering actionable insights for clinical decision-making. Figure 1 provides a visual overview of the
framework to illustrate the data flow and interactions between modules. This design improves clarity
and highlights MADMN’s unique contributions compared to existing models.

Figure 1: Neural Network Structure for MADMN Framework.

3.2 Multi-Modal Feature Extraction

The multi-modal feature extraction module is designed to process three primary types of data
in EMRs: structured data, time-series data, and text data. Structured data, such as demographic
information, laboratory test results, and diagnostic codes, captures quantitative aspects of a patient’s
condition. However, it often suffers from high dimensionality, noise, and missing values. To address
these issues, a Variational Autoencoder (VAE) is employed to extract latent features while simultane-
ously denoising the input. Given structured data input Xstruct, the VAE maps it to a latent variable



representation z that follows a Gaussian distribution:

z ∼ q (z | Xstruct) (1)

The decoder then reconstructs the input based on the latent variable, enabling the model to learn
meaningful representations while reducing noise. The encoded structured feature representation is
denoted as:

Hstruct = V AE (Xstruct) (2)

To further enhance the robustness and stability of the model, a residual connection is incorporated.
This approach ensures gradient flow during backpropagation, improving convergence and feature rep-
resentation:

H
′
struct = Hstruct + ReLU (Ws1Hstruct + bs1) (3)

Here, Ws1 and bs1 are learnable parameters, and ReLU serves as a nonlinear activation function.
This design prevents vanishing gradients and strengthens the expressive power of structured data
features, ensuring more informative input representations for downstream tasks.

Time-series data, such as heart rate, blood pressure, and oxygen saturation, provides critical in-
sights into physiological changes and disease progression. It exhibits dynamic patterns over time,
necessitating temporal modeling techniques. A Time-Aware Transformer is employed to capture both
short-term fluctuations and long-term dependencies. The modeling begins with a self-attention mech-
anism, which computes relationships between different time steps through the query (Q), key (K),
and value (V ) matrices:

Hseq = Softmax

(
QKT

√
d

)
V (4)

where d represents the feature dimension. The self-attention mechanism dynamically adjusts the
importance of each time step, enabling the model to highlight influential moments in the temporal
sequence.

Since transformers lack inherent sequence order information, positional encoding is added to in-
troduce temporal order. The encoding is defined as:

PE(pos,2i) = sin
(

pos

10000
2i

dmodel

)
,

PE(pos,2i+1) = cos
(

pos

10000
2i

dmodel

)
,

(5)

where pos denotes the position index in the sequence, and dmodel is the embedding dimension.
By combining sine and cosine functions with varying frequencies, the positional encoding ensures that
each time step has a unique representation while preserving relative ordering information. This enables
the model to capture periodic trends and long-term dependencies, making it suitable for irregularly
sampled and temporally evolving time-series data.

Text data, including clinical notes, medical histories, and examination reports, provide rich contex-
tual and semantic information. To process this unstructured data, the model employs ClinicalBERT, a
domain-specific variant of BERT pre-trained on biomedical corpora. ClinicalBERT can effectively cap-
ture contextual dependencies and medical terminologies, making it well-suited for modeling complex
medical text. Given an input text sequence Xtext, the embeddings are computed as follows:

Htext = BERT (Xtext) (6)

where Htext represents contextual embeddings generated by ClinicalBERT. These embeddings
encode not only word-level meanings but also the relationships among words based on surrounding
context.



The embedding process in ClinicalBERT includes three components: Token Embedding: Assigns
vector representations to individual words or subwords. Segment Embedding: Distinguishes between
different segments in a document or sentence pairs. Position Embedding: Captures the order of words
in a sequence to retain sentence structure.

By passing these embeddings through multiple transformer layers, ClinicalBERT produces context-
aware representations that capture semantic and syntactic patterns in clinical text. For instance, terms
like "hypertension" and "high blood pressure" are recognized as closely related, improving performance
in downstream tasks such as mortality risk prediction.

The integration of structured, time-series, and text data creates a unified representation that
leverages complementary information from different modalities. Structured data provides quantitative
patterns, time-series data models temporal evolution, and text data offers contextual knowledge,
enabling the model to capture complex relationships in clinical scenarios.

To summarize, the multi-modal feature extraction module processes structured, temporal, and
textual data using dedicated architectures—VAE for structured data, Time-Aware Transformer for
time-series data, and ClinicalBERT for text data. This design ensures that each data type is effectively
represented and provides a solid foundation for downstream tasks such as prediction and decision
support. The combination of these techniques not only reduces the impact of data heterogeneity but
also improves robustness and interpretability in clinical applications.

3.3 Cross-Modal Attention Fusion

The cross-modal attention fusion module is a critical component of the model, designed to address
the heterogeneity and interdependence of multi-modal data in EMRs. Directly concatenating features
from different modalities often results in information loss and fails to capture the intricate interactions
between modalities. To overcome this limitation, the cross-modal attention mechanism dynamically
learns the relationships between features from various modalities and integrates them into a unified
representation. This mechanism allows the model to highlight and prioritize important features while
downplaying less relevant ones, thus improving the overall predictive performance.

The fusion process begins by computing the attention weights between features from different
modalities. For a query matrix Qi derived from modality i and a key matrix Kj derived from modality
j, the attention weight Aij is computed as:

Aij = Softmax

(
QiK

T
j√

d

)
Vj (7)

Here, Qi, Kj , Vj represent the query, key, and value matrices of modalities i and j, respectively,
and d is the dimensionality of the feature space. The softmax function ensures that the attention
weights are normalized and sum to 1, enabling the model to selectively focus on relevant features
across modalities.

Once the attention weights are computed, the features from all modalities are aggregated into a
fused representation using a dynamic weighting scheme. The fused representation Hfused is expressed
as:

Hfused = α1Hstruct + α2Hseq + α3Htext (8)

where Hstruct, Hseq and Htext denote the features extracted from structured, time-series, and text
data, respectively. The weights α1, α2, α3 are dynamically computed based on the importance of each
modality. These weights are generated through a learnable softmax layer applied to the concatenated
features:

α = Softmax (WHcross) (9)

Here, W is a learnable weight matrix, and Hcross is the concatenation of all modality-specific
features. The softmax operation ensures that the weights are non-negative and sum to 1, allowing
the model to adaptively adjust the contribution of each modality depending on the task and data
characteristics.



To further enhance the robustness of the fusion process, a sparsity constraint is applied to the
attention matrix Aij . The sparsity regularization term encourages the model to focus on a limited
number of key features, thus avoiding overfitting and improving interpretability:

Lattu =∥ A ∥1 (10)
By penalizing the sum of the absolute values of the attention weights, this constraint ensures

that only the most relevant features are given significant attention during the fusion process. The
cross-modal attention fusion mechanism not only integrates multi-modal features but also facilitates
information sharing between modalities. For instance, trends in time-series data (e.g., a sudden drop
in blood pressure) can be linked to specific diagnostic codes in structured data or textual descriptions
(e.g., "patient experiencing hypotension"). This ability to model interactions and dependencies across
modalities allows the model to capture richer and more informative representations, ultimately leading
to improved performance in downstream tasks.

In summary, the cross-modal attention fusion module transforms the heterogeneous information
from structured, time-series, and text data into a unified and contextually enriched representation.
By dynamically adjusting the importance of each modality and focusing on key features, this module
lays the foundation for effective downstream modeling and decision-making in clinical settings.

3.4 DMN Modeling

The DMN is designed to model temporal dynamics in multi-modal clinical data, capturing both
short-term changes and long-term trends in a patient’s condition. Unlike static models, the DMN
maintains a memory state that evolves over time, enabling it to reflect the progression of a patient’s
physiological status or disease condition. The DMN begins by initializing a memory state based on
the fused multi-modal feature representation Hfused, obtained from the cross-modal attention fusion
module. The initialization is defined as:

M0 = f (Hfused) (11)
where f(·) is a learnable transformation, such as a fully connected layer with a non-linear activation

function. This initial memory state encodes the patient’s baseline condition and serves as the starting
point for temporal modeling.

At each time step t, the memory state is updated using a gated recurrent unit (GRU). The
GRU integrates new information from the current fused feature representation Hfused,t while retaining
relevant historical context from the previous memory state Mt−1. The memory update process is
defined as:

Mt = GRU (Mt−1, Hfused,t) (12)
This update mechanism allows the DMN to dynamically adjust its focus, emphasizing features

that are most relevant at each time step. The GRU’s gating structure ensures that only significant
new information is incorporated, preventing noise or redundant data from overwhelming the model.

To refine the patient representation further, the DMN uses an attention mechanism to highlight key
features at each time step. The attention mechanism computes a weighted combination of the fused
features Hfused, guided by the current memory state Mt, and generates the final output representation:

Hout = Attention (Mt, Hfused) (13)
This iterative reasoning process ensures that the model can focus on clinically significant patterns,

such as rapid changes in vital signs, emerging symptoms, or notable events described in clinical notes.
By dynamically interacting with multi-modal features, the DMN captures complex dependencies and
contextual information critical for understanding a patient’s evolving condition.

The DMN’s ability to maintain and update a memory state, combined with its attention-based
reasoning, makes it well-suited for clinical prediction tasks. It provides a comprehensive temporal
view of a patient’s status while ensuring that the most relevant features are emphasized, improving
both the accuracy and interpretability of predictions in real-world clinical applications.



3.5 Risk Prediction Module

The risk prediction module is the final stage of the model, responsible for generating the predicted
mortality risk score based on the multi-modal and temporal representations derived from the DMN.
This module consolidates the learned features into a prediction that reflects the likelihood of an adverse
outcome, such as mortality, for a given patient.

The output of the DMN, Hout, serves as the input to the risk prediction module. A fully con-
nected layer is used to map this high-dimensional representation to a single scalar value or a set of
probabilities, depending on the nature of the prediction task. In the case of binary classification, the
model outputs the predicted probability of the positive class (e.g., mortality):

ŷ = σ (WHout + b) (14)

where W and b are learnable parameters of the fully connected layer, and σ(·) is the sigmoid
activation function that maps the output to a probability in the range [0, 1].

To train the model, a binary cross-entropy loss function is employed, which measures the difference
between the predicted probability ŷ and the ground truth label y. The loss function is defined as:

Lrisk = − 1
N

∑N
i=1 [yi log (ŷi) + (1 − yi) log (1 − ŷi)] (15)

Here, yi ∈ {0, 1} represents the ground truth label for the i-th patient, ŷi is the predicted probability
for the same patient and N is the total number of patients in the training dataset.

The binary cross-entropy loss function penalizes incorrect predictions and rewards accurate ones,
pushing the model to minimize the overall error. By backpropagating this loss, the model learns to
adjust its parameters to optimize prediction performance.

The risk prediction module ensures that the model outputs interpretable and actionable results.
For example, the predicted probability can be used to stratify patients into risk categories (e.g.,
low, medium, high) or to trigger early interventions for high-risk individuals. By combining multi-
modal feature extraction, cross-modal attention, and temporal modeling, the module provides a robust
foundation for clinical decision-making in real-world scenarios.

4 Experimental Results

4.1 Dataset

This study utilizes the MIMIC-III (Multiparameter Intelligent Monitoring in Intensive Care)
dataset, which contains over 60,000 ICU admission records. The dataset includes a rich collection
of medical data such as demographic information, laboratory tests, medication usage, nursing records,
and clinical notes. The prediction task focuses on hospital mortality, with the label defined as a binary
variable, where 1 indicates death and 0 indicates survival. The dataset encompasses three primary
data types: structured features, such as age, gender, admission type, and source; time-series features,
such as daily counts of lab tests, medication orders, and caregiver activities; and text features, includ-
ing physician notes and examination reports. These features collectively reflect patients’ conditions
and treatment histories, providing a robust foundation for multi-modal data modeling.

To ensure data quality and consistency, we applied several preprocessing steps. Missing values in
structured data were handled using median imputation for numerical features and mode imputation for
categorical features to minimize data loss while maintaining consistency across modalities. Numerical
variables were scaled using min-max normalization to map values into the range [0, 1], ensuring
comparability across features. Clinical notes were preprocessed through lowercasing, tokenization,
and removal of stopwords to prepare the data for embedding extraction using the ClinicalBERT
model. To avoid data leakage, features containing future information, such as length of stay, were
excluded from the training data. This ensures that the model does not access information that would
only be available after prediction time.

The dataset was divided into 70% for training, 15% for validation, and 15% for testing to ensure
unbiased evaluation. Stratified sampling was applied to preserve the distribution of the mortality label



across subsets. Given the dataset’s 12% mortality rate, class-weighted loss functions were implemented
during training to address class imbalance and improve predictive performance.

4.2 Baseline Models and Experimental Setup

The experiment employed various traditional machine learning and deep learning models as base-
lines for comparative analysis, including random forests and logistic regression as traditional models.
Random forests were used to model nonlinear interactions between features, while logistic regression
served as a simple linear model to facilitate interpretability. For deep learning models, multilayer
perceptrons (MLP), long short-term memory networks (LSTM), gated recurrent units (GRU), tem-
poral convolutional networks (TCN), and Transformers were selected. These models are suitable for
handling high-dimensional feature interactions, time-series modeling, and capturing complex sequen-
tial dependencies, enabling a comprehensive evaluation of different modeling approaches for the task.
Table 1 shows the baseline model configurations. The dataset was split into 70% for training, 15%
for validation, and 15% for testing. All models were fine-tuned using grid search or random search
for hyperparameter optimization and evaluated through cross-validation. Evaluation metrics included
Accuracy, F1 Score, and ROC-AUC to assess classification accuracy, performance under class imbal-
ance, and overall discrimination capability. Additionally, confusion matrices and ROC curves were
visualized to analyze classification performance and decision boundaries. The experiments were imple-
mented using Python with TensorFlow frameworks and conducted under GPU-accelerated conditions
for model training and testing.

Table 1: Baseline Model Configurations
Model Input Type Key Features Hyperparameters
Logistic Re-
gression

Structured data Linear classification, inter-
pretability

L2, Solver=lbfgs

Random
Forest

Structured data Nonlinear modeling, ensemble
learning

n_estimators=100,
max_depth=10

MLP Structured data High-dimensional feature in-
teraction modeling

Hidden layers=2, Neu-
rons=[128, 64], Dropout=0.5

LSTM Time-series data Sequential dependency mod-
eling, long-term memory

Hidden size=128, Layers=2,
Dropout=0.3

GRU Time-series data Simplified sequential model-
ing, efficient memory use

Hidden size=128, Layers=2,
Dropout=0.3

TCN Time-series data Parallel temporal modeling,
convolutional structure

Filters=64, Kernel size=3,
Dropout=0.3

Transformer Time-series &
Text data

Attention mechanism, global
context modeling

d_model=128, Heads=8,
Layers=4, Dropout=0.1

4.3 Comparative Experiments

To evaluate the effectiveness of the proposed MADMN model, comparative experiments were con-
ducted against various baseline models, including both traditional machine learning and deep learning
approaches. The baseline models include logistic regression, random forest, multilayer perceptron
(MLP), long short-term memory networks (LSTM), gated recurrent units (GRU), temporal convo-
lutional networks (TCN), and Transformer. All models underwent the same preprocessing and data
splitting procedures to ensure fair comparisons. Hyperparameters were tuned using grid search or
random search, and the final performance was evaluated on the test set using Accuracy, F1 Score,
and ROC-AUC as metrics. Additionally, ROC curves and confusion matrices were used to analyze
classification performance and investigate error patterns.

Table 2 shows the performance comparison of models on the test set. The experimental results
demonstrate that the MADMN model outperforms all baseline models across all evaluation metrics.
On the test set, MADMN achieved an Accuracy of 0.882, an F1 Score of 0.765, and a ROC-AUC of



0.910. Compared to baseline models, traditional machine learning models showed reasonable perfor-
mance with structured features but struggled to model complex interactions and temporal dynamics,
as evidenced by the ROC-AUC of 0.812 for logistic regression and 0.842 for random forest. Deep
learning models performed better, with the MLP achieving a ROC-AUC of 0.855, while LSTM and
GRU leveraged sequential modeling capabilities to achieve 0.865 and 0.868, respectively. TCN and
Transformer models further improved results, with ROC-AUC values of 0.872 and 0.878, but still fell
short of the MADMN model. The p-values for all comparisons were less than 0.01, confirming that
the observed improvements are statistically significant and unlikely to be due to random variation.
This analysis demonstrates that MADMN’s superior performance is attributable to its architecture
and ability to capture complex multi-modal relationships rather than chance.

Table 2: Performance Comparison of Models on the Test Set
Model Accuracy F1 Score ROC-AUC MCC p-value (vs

MADMN)
Logistic Regression (LR) 0.78 0.65 0.812 0.452 < 0.001
Random Forest (RF) 0.81 0.685 0.842 0.498 < 0.001
Multilayer Perceptron (MLP) 0.825 0.7 0.855 0.525 < 0.001
LSTM 0.835 0.715 0.865 0.538 < 0.001
GRU 0.838 0.72 0.868 0.543 < 0.001
TCN 0.842 0.725 0.872 0.549 < 0.001
Transformer 0.85 0.73 0.878 0.557 < 0.001
MADMN (Proposed) 0.882 0.765 0.910 0.601 -

The superior performance of MADMN can be attributed to its cross-modal attention mechanism
and dynamic memory network. The cross-modal attention mechanism effectively integrates struc-
tured, time-series, and textual features, leveraging complementary information across modalities. The
dynamic memory network captures long-term dependencies in time-series data and highlights key
features through attention mechanisms, enabling the model to better handle complex and evolving
patient data. Figure 2 shows the ROC curves of different models. The ROC curves show that MADMN
maintains a high true positive rate while keeping the false positive rate low, further confirming its
superior classification capability and practical value.

In summary, the comparative experiments validate the advantages of the MADMN model in multi-
modal and dynamic modeling tasks. It outperforms baseline models in classification performance, ro-
bustness, and feature fusion, providing a more accurate and efficient solution for clinical risk prediction
tasks.

4.4 Ablation Study

To further investigate the contributions of each component in the proposed MADMN model, an
ablation study was conducted. The study analyzed the impact of removing or replacing key modules,
including the cross-modal attention mechanism and the dynamic memory network, as well as the effects
of excluding specific data modalities. The goal was to quantify the importance of these components
and validate their contributions to model performance.

Table 3 shows results of ablation study and Figure 3 shows the ROC curves of ablation study. The
first experiment removed the cross-modal attention mechanism and directly concatenated features
from all modalities. The results showed a decline in F1 Score from 0.765 to 0.721 and ROC-AUC from
0.910 to 0.882, indicating that the attention mechanism effectively captured relationships between
modalities and emphasized critical features. In the second experiment, the dynamic memory network
was removed and replaced with a simple average pooling mechanism for temporal modeling. This
change further reduced performance, with F1 Score dropping to 0.705 and ROC-AUC falling to 0.870,
demonstrating that the memory network played a crucial role in capturing long-term dependencies
and dynamic patterns.

To better assess the dynamic memory network, it was also replaced with LSTM and GRU variants.
While these replacements partially recovered performance, achieving ROC-AUC values of 0.875 and



Figure 2: ROC Curves of Different Models

Table 3: Results of Ablation Study
Model Variant Accuracy F1 Score ROC-AUC
Full Model (MADMN) 0.882 0.765 0.910
No Attention 0.850 0.721 0.882
No Memory Network 0.832 0.705 0.870
Memory as LSTM 0.842 0.715 0.875
Memory as GRU 0.845 0.720 0.878
No Structured Data 0.841 0.728 0.873
No Time-Series Data 0.835 0.713 0.868
No Text Data 0.843 0.732 0.875

0.878 respectively, they still underperformed compared to the full MADMN model. This highlights
the effectiveness of the proposed memory design for modeling temporal dependencies.

Further experiments examined the importance of different data modalities by removing structured
features, time-series features, and text features. The results showed noticeable declines in performance
when any modality was excluded, with F1 Scores dropping to 0.728, 0.713, and 0.732, respectively.
Among these, removing time-series data resulted in the most significant drop, underscoring its impor-
tance for capturing temporal dynamics in patient conditions.

Finally, alternative designs for the attention mechanism were tested by replacing it with simple
weighted sums and average pooling. Both modifications resulted in lower performance, with ROC-
AUC values of 0.879 and 0.870, respectively, indicating that the cross-modal attention mechanism
effectively captured interactions between different modalities and enhanced feature representation.

The ablation study results, summarized in the table below, clearly demonstrate that the cross-
modal attention mechanism and dynamic memory network are critical for achieving optimal perfor-
mance. The MADMN model leverages these components to effectively integrate multi-modal data and
model temporal dependencies, providing superior classification accuracy and robustness compared to
simplified designs or excluded features.



Figure 3: ROC Curves of Ablation Study

5 Discussions

5.1 Theoretical Implications

Through the SHAP analysis of the MADMN model, several important theoretical implications
emerged. First, the analysis revealed that the model is able to identify clinically significant features
for mortality risk prediction. For instance, age is a critical factor, with older patients showing higher
predicted mortality risks, especially when age exceeds a certain threshold, where the risk rises sharply.
Length of stay also plays a crucial role, as longer hospitalizations often indicate more severe condi-
tions and greater treatment needs, thus elevating the mortality risk. Admission type and admission
pathways are also significant structural features, with patients admitted through emergency or referral
pathways tending to have higher risks due to the severity of their conditions. These findings suggest
that future theoretical research could continue to focus on the importance of features in combination
with clinical context, thereby improving model accuracy and reliability.

Moreover, the analysis revealed interactions between static and dynamic features, with dynamic
features proving particularly important when patients’ conditions change over time. The model suc-
cessfully captured changes in dynamic features such as medication frequency, vital sign fluctuations,
and lab test variations, all of which were strongly associated with increased mortality risk. For ex-
ample, frequent adjustments in medication dosages or changes in lab tests often indicate clinical
deterioration, which raises mortality risk. This finding provides new perspectives for theoretical re-
search, emphasizing the importance of joint modeling of static and dynamic features in predictive
models to improve prediction accuracy.

In addition, the study showed that the relationship between medication frequency and mortality
risk is nonlinear. Initially, frequent medication use may decrease risk because it suggests active treat-
ment. However, excessive intervention beyond a certain threshold could signal worsening conditions,
leading to a sharp increase in risk. This phenomenon confirms that the model effectively captures
nonlinear relationships and threshold effects, providing valuable insights into the modeling of complex
clinical data.

Finally, counterfactual analysis demonstrated the impact of various interventions on mortality



risk prediction. For instance, reducing medication frequency or adjusting lab test intervals after
stabilization led to a noticeable decrease in predicted mortality risk. This suggests that counterfactual
analysis not only has practical value but also provides a new direction for the theoretical development
of predictive models, especially in simulating the effects of different treatment interventions.

5.2 Practical Implications

From a practical perspective, the MADMN model offers several key insights for clinical practice,
particularly in treatment optimization, risk assessment, and personalized medical decision-making.
First, the MADMN model enables precise mortality risk prediction for individual patients, providing
tailored treatment recommendations. For high-risk patients, reducing medication frequency or adjust-
ing lab test frequencies can significantly lower predicted mortality risk. Conversely, for medium-risk
patients, increased care interventions and more frequent monitoring might be required to detect po-
tential health issues earlier.

Furthermore, counterfactual analysis supports clinical decision-making by simulating the effects of
different treatment strategies. Doctors can model different interventions, such as altering medication
dosages or modifying admission pathways, to assess their impact on mortality risk. This enables
the identification of the most effective treatment strategies and supports evidence-based decisions.
Such analyses help doctors understand the potential effects of treatment plans and provide more
personalized care for patients.

In terms of resource allocation, the MADMN model can assist hospitals in optimizing their resource
distribution. By assessing patient risk levels, hospitals can prioritize high-risk patients for intensive
monitoring and care, ensuring that medical resources are used effectively. This not only improves
hospital operational efficiency but also ensures that patients receive the best treatment according to
their condition.

Moreover, when integrated into hospital information systems, the MADMN model can provide
real-time mortality risk assessments and dynamic monitoring. By continuously tracking patient data
such as vital signs, medication usage, and lab test results, the system can promptly identify high-risk
patients and alert clinical staff, allowing for timely interventions. This helps hospitals respond quickly
to changes in patient conditions and ensure timely treatment.

Finally, the interpretability of the model is a major advantage in practical applications. The
SHAP analysis provides transparency, allowing clinicians to understand the reasoning behind the
model’s predictions. This not only increases trust in the AI model but also facilitates its widespread
adoption in clinical settings. As AI technology continues to develop, enhancing model interpretability
will be key to its broader application in healthcare.

6 Conclusions
This paper proposes MADMN, a Multi-modal Attention and Dynamic Memory Network, for early

mortality risk prediction based on electronic medical records. The model addresses the challenges
posed by the heterogeneous and dynamic nature of EMR data by integrating multi-modal feature
extraction, cross-modal attention mechanisms, and dynamic memory networks. It effectively models
structured, time-series, and text data, capturing both long-term dependencies and short-term varia-
tions in patient conditions.

Experimental results demonstrate that MADMN significantly outperforms traditional machine
learning and deep learning baseline models in terms of accuracy, F1 score, and ROC-AUC. This val-
idates its ability to process multi-modal feature interactions and dynamic changes effectively. The
ablation study further confirms the critical contributions of the cross-modal attention mechanism and
dynamic memory network to model performance and interpretability. SHAP analysis verifies the inter-
pretability of the model by highlighting key features such as age, length of stay, and dynamic clinical
interactions. These findings align closely with clinical insights, ensuring transparency and trust in
the model’s predictions. Additionally, counterfactual analysis showcases MADMN’s potential in per-
sonalized treatment planning by evaluating the impact of hypothetical changes in patient conditions,



thus supporting clinical interventions and resource optimization. In conclusion, the proposed multi-
modal risk prediction model has the potential to significantly enhance the application of EMRs in
clinical decision-making and risk assessment. By leveraging complementary information from hetero-
geneous data sources, dynamically modeling temporal patterns, and providing interpretable outputs,
the model contributes to advancing personalized and precision medicine, offering new solutions for
improving patient care.

Despite its promising performance, this study has several limitations. First, the model relies on the
MIMIC-III dataset, which primarily represents ICU patients from a specific region in the United States.
This may limit its generalizability to other populations or healthcare systems. Future work could focus
on testing the model on larger and more diverse datasets to enhance its applicability. Second, the text
data processing relies heavily on the pre-trained ClinicalBERT model, which may not fully capture
semantic information in non-English texts or varying medical terminologies. Future research could
explore multilingual and cross-cultural text modeling approaches to improve generalizability.

The MADMN model demonstrates strong performance in early mortality risk prediction; how-
ever, several limitations must be acknowledged. First, the model was trained and validated using the
MIMIC-III dataset, which primarily represents ICU patients in the United States. This may limit
its generalizability to other geographic regions and healthcare systems. Future work should test the
model on more diverse datasets and explore domain adaptation techniques to improve adaptability
across populations. Second, the model’s complexity may pose challenges for deployment in resource-
constrained environments. Developing lightweight versions of MADMN using model compression or
knowledge distillation could address this issue and enable real-time applications. Third, the reliance
on ClinicalBERT for text processing may restrict performance in non-English contexts. Incorporating
multilingual models and data augmentation methods could enhance the model’s versatility. Finally,
while the model improves interpretability through SHAP analysis and counterfactual simulations, fur-
ther enhancements using attention visualizations and causal inference methods could provide deeper
insights into feature interactions and temporal patterns. Future extensions could also focus on broader
clinical applications, such as readmission prediction, length-of-stay estimation, and complication de-
tection, to increase the model’s utility in clinical practice.
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