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Abstract

As the quick advancement of information technology, cloud computing technology has risen
rapidly, but the energy consumption and resource waste generated by data centers are also increas-
ing. Therefore, the study analyzed the hybrid scheduling of cloud computing resources. Firstly,
a improved particle swarm optimization algorithm-based resource scheduling model was raised to
address the initial placement problem of virtual machines. Secondly, considering that the resource
requirements of applications in cloud computing environments are dynamically changing, attention
mechanisms and whale optimization algorithms were introduced to optimize the bidirectional long
short-term memory network and build a resource demand prediction model. The results showed
that when the amount of virtual machines was 200, the energy consumption of the improved parti-
cle swarm algorithm was 6.19 kW/h. The completion time of the algorithm always did not exceed
2000ms under different numbers of virtual machines and tasks. When the problem size was 500,
the proposed resource demand forecasting model tended to converge at around 100 epochs. The
prediction accuracy and recall rate of the proposed resource demand forecasting model were 94.35%
and 93.62%, respectively. The experiment outcomes indicate the resource scheduling and resource
demand prediction effectiveness of the raised model. The outcomes contribute to improving the
service quality and effectiveness of the entire cloud platform, and promoting the development of
cloud computing technology.

Keywords: cloud computing, resource scheduling, genetic algorithm, particle swarm optimiza-
tion algorithm, WOA, Bi-LSTM.

1 Introduction
As the popularity of cloud computing (CP), the resource scheduling problem of cloud data centers

is also receiving increasing attention. CP provides fast and secure CP services and data storage on
websites [1]. By providing ultra large scale computing power and flexible resource scheduling, CP can
automatically adjust resources according to user needs and provide elastic scalability capabilities [2].
However, cloud centers generally suffer from low utilization of software and hardware resources and
high energy consumption. Therefore, to fully utilize the resources on the cloud platform and improve
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the service quality and performance of the entire cloud platform, it is crucial to adopt effective re-
source scheduling strategies. CP resource scheduling refers to the process of effectively managing and
allocating computing resources through intelligent algorithms and policies in a hybrid cloud environ-
ment. The main purpose is to ensure the reasonable allocation of computing resources among different
tasks and users, to achieve efficient operation of the entire system [3, 4]. However, resources in cloud
environments are usually dynamic, including changes in availability, delays in resource availability,
and fluctuations in resource usage, all of which pose serious challenges to resource scheduling [5]. In
this context, research proposes resource scheduling models with Particle Swarm Optimization (PSO)
and Genetic Algorithm (GA), as well as resource demand prediction models grounded on improved
Bidirectional Long Short Term Memory (Bi-LSTM) network, to solve the scheduling resource issue in
complex cloud environments and raise the resource usage of cloud platforms. The innovation of the re-
search includes the utilization of an attention mechanism, which assigns different weights to the hidden
states of Bi-LSTM, and using Whale Optimization Algorithm (WOA) to raise the hyperparameters
of Bi-LSTM.

2 Literature review
CP is a mode of adding, using and delivering Internet based related services, allowing users to

access configurable computing resource pools through the network. Katal A et al. stated that CP
data centers require a large amount of electricity to provide services, leading to an increase in carbon
dioxide emissions. Therefore, they engaged in a deliberation regarding the software technologies that
can be leveraged to develop environmentally sustainable data centers and the strategies for curtail-
ing data center power consumption. This helped to reduce environmental pollution and promote the
green development of CP technology [6]. Mark J et al. discussed strategies to reduce carbon emissions
from data transmission in CP environments, addressing the significant challenges posed by the rapid
development of CP to environmental sustainability. They also provided practical recommendations for
reducing carbon emissions from hardware, algorithms, and renewable energy utilization aspects. This
helped to reduce the impact on the environment while maintaining high performance and reliability
standards for CP [7]. Islam R et al. stated that CP provides a wide range of architectural configu-
rations, allowing organizations to swiftly and effectively expand or contract their computer resources
in response to the dynamic demands of the business environment and market conditions. Besides, to
better understand CP, the future advantages and challenges it will face were discussed, pointing out
that CP may promote further innovation in artificial intelligence and machine learning [8]. Kunduru
AR et al. stated that although CP has the advantages of flexibility and cost-effectiveness, applying
CP in existing business models may pose significant security risks. Therefore, the merits and demerits
of CP, as well as its application in information risk management, were discussed, and it was pointed
out that enterprises need to actively anticipate and consider possible risks and response strategies
[9]. Cinar B et al. stated that cloud services in CP have not yet developed primary forensic tools to
assist in investigating criminal behavior, making it difficult to effectively prevent cloud vulnerabilities
and criminal targets. Therefore, an analysis of digital forensics investigation was conducted, and the
current and future trends of cloud forensics methods and tools were examined, which will help improve
the security of CP technology [10].

PSO algorithm denotes a population-based stochastic optimization technology that verifies the
fitness of each point by regularly moving particles multiple times in the solution space. It has been
widely used in the optimization of virtual machine scheduling strategies. Nabi et al. asserted that
metaheuristic algorithms based on swarm intelligence were highly suitable for cloud scheduling. How-
ever, they noted that existing PSO algorithms still require further optimization to realize optimal
scheduling outcomes. Accordingly, a linear descent and adaptive inertia-weight balancing approach
was utilized with the objective of achieving a balanced relationship between local and global search.
The outcomes showed that the raised method improved completion time, throughput, and average
resource utilization by 10%, 12%, and 60%, respectively [11]. Malik M et al. designed a hybrid algo-
rithm that integrates PSO and grey wolf optimization algorithm to perform parallel task scheduling
and find optimized virtual machines (VMs) for the task scheduling problem in CP, which helped to
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reduce response time to the greatest extent possible. The outcomes indicated that the raised method
was more effective than existing systems [12]. Syed D et al. stated that the widespread utilization of
CP has led to a significant surge in user requests, which may result in issues such as resource surplus
or low resource utilization. Therefore, the utilization of PSO algorithm and its variants was explored
to evenly distribute incoming traffic with efficient resource utilization, which could help raise the ef-
fectiveness of CP systems [13]. Nabi S et al. developed a resource dynamic load balancing algorithm
grounded on an improved PSO algorithm to improve user satisfaction and cloud resource utilization,
to achieve task scheduling for CP. The outcomes indicated that the raised algorithm increased com-
pletion time, average resource utilization, and penalty cost by 66%, 162%, and 98%, respectively,
contrast to existing advanced task scheduling heuristic methods [14]. Srivastava A et al. solved the
issue of energy-efficient resource allocation in CP by training a dataset using the PSO algorithm.
They proposed solving the configuration problem by scheduling tasks to VM, which helped to lessen
system energy consumption and improve the effectiveness of scheduling algorithms. The outcomes in-
dicated that the raised method could improve energy efficiency by 12% and increase average start-up
time by over 50%, demonstrating certain effectiveness [15]. Mangalampalli S et al. proposed using
an optimized POS algorithm for task scheduling, as most existing CP scheduling algorithms over-
look the issues of energy consumption, time, and total electricity costs. The results showed that the
proposed algorithm reduced energy consumption by 22% and 12% compared to traditional PSO and
Client/Server algorithms, respectively, and had certain feasibility and effectiveness [16].

In summary, although previous researchers have conducted extensive research on CP and affirmed
the role of PSO algorithm in CP scheduling, the current CP resource scheduling technology still faces
issues of poor stability and performance. Therefore, the research on CP resource hybrid scheduling
algorithm based on GA and PSO has certain practical application value and prospects.

3 Research methodology
To fully utilize resources on cloud platforms, a GA-PSO algorithm-based resource scheduling model

is designed to address the initial placement issue of CP VM. Secondly, a resource demand prediction
model with improved Bi-LSTM is developed to address the issue of dynamic placement of VM.

3.1 Construction of resource scheduling model based on GA-PSO algorithm

In CP, resources are scheduled in the form of VM, and the main task of virtual machine resource
scheduling is to allocate and manage virtual machine resources reasonably to raise the efficiency and
performance of CP systems. Therefore, a GA-PSO algorithm is proposed to schedule CP resources.
The process of CP resource scheduling is shown in Figure 1.

Assuming the virtual machine is V = {v1, v2, ..., vm} and the server queue is S = {s1, s2, ..., sn},
the mapping relationship between the virtual machine and the server is shown in formula (1).

A =


a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
am1 am2 ... amn

 (1)

In equation (1), if virtual machine vi is placed on server sj , then aij = 1; otherwise, aij = 0. The
study uses the resource waste rate to reflect the resource usage of servers, and the calculation of the
resource waste rate wj for the jth server is shown in formula (2).

wj =

∣∣∣Rc
j − Rr

j

∣∣∣+ α

U c
j + U r

j

(2)

In equation (2), Rc
j and Rr

j represent the proportions of remaining CPU and memory resources to
total resources. wj represents the balance parameter, set to 0.0001 in the study. U c

j and U r
j represent
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scheduling is shown in Figure 1. 

User Task Virtual machine Data center

Manager Scheduler Allocation Strategy

 
Fig.1 Cloud computing resource scheduling flowchart 

Assuming the virtual machine is \[V=\left\{ {{v}_{1}},{{v}_{2}},...,{{v}_{m}} 
\right\}\] and the server queue is \[S=\left\{ {{s}_{1}},{{s}_{2}},...,{{s}_{n}} 
\right\}\], the mapping relationship between the virtual machine and the server is shown 
in formula (1). 

\[A=\left[ \begin{matrix} 
   {{a}_{11}} & {{a}_{12}} & ... & {{a}_{1n}}  \\ 
   {{a}_{21}} & {{a}_{22}} & ... & {{a}_{2n}}  \\ 

   ... & ... & ... & ...  \\ 
   {{a}_{m1}} & {{a}_{m2}} & ... & {{a}_{mn}}  \\ 

\end{matrix} \right]\]     （1） 
In equation (1), if virtual machine \[{{v}_{i}}\] is placed on server \[{{s}_{j}}\], 

then \[{{a}_{ij}}=1\]; otherwise, \[{{a}_{ij}}=0\]. The study uses the resource waste 
rate to reflect the resource usage of servers, and the calculation of the resource waste 
rate \[{{w}_{j}}\]

 
for the \[j\]th server is shown in formula (2). 

\[{{w}_{j}}=\frac{\left| R_{j}^{c}-R_{j}^{r} 
\right|+\alpha }{U_{j}^{c}+U_{j}^{r}}\]     （2） 

In equation (2), \[R_{j}^{c}\]
 
and \[R_{j}^{r}\]

 
represent the proportions of 

remaining CPU and memory resources to total resources. \[{{w}_{j}}\] represents the 
balance parameter, set to 0.0001 in the study. \[U_{j}^{c}\]

 
and \[U_{j}^{r}\]

 
represent 

the proportions of used CPU and memory resources to total resources, respectively. The 
calculation of the load \[{{L}_{j}}\]

 
of the \[j\]th server is shown in formula (3). 

\[{{L}_{j}}=\sum\nolimits_{i=1}^{m}{(r_{i}^{c}}{{a}_{ij}})+\sum\nolimits_
{i=1}^{m}{(r_{i}^{r}}{{a}_{ij}})+\sum\nolimits_{i=1}^{m}{(r_{i}^{d}}{{a}_{ij

}})\]    （3） 
In equation (3), \[r_{i}^{c}\], \[r_{i}^{r}\], and \[r_{i}^{d}\] respectively 

represent the amount of CPU requests, memory requirements, and disk requirements of 

Figure 1: Cloud computing resource scheduling flowchart

the proportions of used CPU and memory resources to total resources, respectively. The calculation
of the load Lj of the jth server is shown in formula (3).

Lj =
∑m

i=1
(rc

i aij) +
∑m

i=1
(rr

i aij) +
∑m

i=1
(rd

i aij) (3)

In equation (3), rc
i , rr

i , and rd
i respectively represent the amount of CPU requests, memory re-

quirements, and disk requirements of virtual machine i. To balance the resource load of all servers on
the cloud platform, formula (4) is proposed in the study.

L̄ =
∑n

j=1 (Lj)
n

S =
√∑n

j=1 (Lj−L̄)2

n

(4)

In equation (4), L̄ means the average load and S means the standard deviation. The calculation
of server energy consumption wp

j is shown in formula (5).pt
j = pidle

j +
(
pmax

j − pidle
j

)
U c

j (t)

wp
j = pt

j

pmax
j

(5)

In equation (5), pt
j represents the power of the jth server at time t, pmax

j represents the maximum
power, and pidle

j represents the power when idle. Due to the involvement of multiple constraints in re-
source scheduling in CP, the complexity of the problem is high. Therefore, heuristic algorithms capable
of handling large-scale and complex issues are adopted in the research to solve it. Heuristic algorithm
is an algorithm based on intuitive or empirical construction, which combines random algorithm and
local search algorithm, and can provide feasible solutions for the combinatorial optimization problem
to be solved at an acceptable cost [17]. The concrete calculation method of the heuristic algorithm is
illustrated in Figure 2.

The GA is a meta-heuristic algorithm that emulates natural selection processes. It employs a set of
operators, including mutation, crossover, and selection, which are inspired by biological mechanisms,
to develop effective solutions to optimization and search problems of the highest quality [18]. The
search process of GA relies on the internal fitness function to calculate the fitness values of each
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virtual machine \[i\]. To balance the resource load of all servers on the cloud platform, 
formula (4) is proposed in the study. 

\[\left\{ \begin{matrix} 
   \bar{L}=\frac{\sum\nolimits_{j=1}^{n}{({{L}_{j}})}}{n}  \\ 

   S=\sqrt{\frac{\sum\nolimits_{j=1}^{n}{{{({{L}_{j}}-
\bar{L})}^{2}}}}{n}}  \\ 

\end{matrix} \right.\]     （4） 
In equation (4), \[\bar{L}\] means the average load and \[S\] means the standard 

deviation. The calculation of server energy consumption \[w_{j}^{p}\]
 
is shown in 

formula (5). 
\[\left\{ \begin{matrix} 

   p_{j}^{t}=p_{j}^{idle}+\left( p_{j}^{\max }-p_{j}^{idle} 
\right)U_{j}^{c}(t)  \\ 

   w_{j}^{p}=\frac{p_{j}^{t}}{p_{j}^{\max }}  \\ 
\end{matrix} \right.\]     （5） 

In equation (5), \[p_{j}^{t}\]
 
represents the power of the \[j\]th server at time \[t\], 

\[p_{j}^{\max }\]
 
represents the maximum power, and  

 
idle
jp

 

 
represents the power when idle. Due to the involvement of multiple constraints 

in resource scheduling in CP, the complexity of the problem is high. Therefore, heuristic 
algorithms capable of handling large-scale and complex issues are adopted in the 
research to solve it. Heuristic algorithm is an algorithm based on intuitive or empirical 
construction, which combines random algorithm and local search algorithm, and can 
provide feasible solutions for the combinatorial optimization problem to be solved at 
an acceptable cost [17]. The concrete calculation method of the heuristic algorithm is 
illustrated in Figure 2. 

(3,0) (3,1) (3,2) (3,3)
(2,0)

(1,0)
(0,0)

(2,1) (2,2) (2,3)
(1,1) (1,2) (1,3)

(0,1) (0,2) (0,3)

(3,0) (3,1) (3,2)
(2,0)

(1,0)
(0,0)

(2,1) (2,2)
(1,1) (1,2) (1,3)

(0,1) (0,2) (0,3)

F(x∈X)
black box

f(x)

Pop(t+1)

Pop t

Determine the 
optimal method for 

the creation of 
novel candidate 

solutions

Compute objective 
values of candidate 

solutions

New solutions become 
current solutions

Set of candidate 
solutions

(3,3)
(2,3)

 

Fig.2 Calculation flowchart of heuristic algorithm 
The GA is a meta-heuristic algorithm that emulates natural selection processes. It 

employs a set of operators, including mutation, crossover, and selection, which are 

Figure 2: Calculation flowchart of heuristic algorithm

chromosome and select excellent individuals, as shown in formula (6).{
Fit(i) = 1

(F (x))k

k = b + (a(Iter max −Iter))2 (6)

In formula (6), Fit(i) means the fitness function value of individual i, a and b represent adjustable
parameters, Iter max means the max amount of iterations, and Iter means the current amount of
iterations. Based on the individual fitness function value, the GA determines how to pass on the
parent gene to the offspring through the selection operator. The probability of individual i being
chosen is denoted in formula (7).

P (i) = Fit(i)∑M
i=1 Fit(i)

, i = 1, 2, ..., M (7)

In formula (7), M represents the population size. Although GA has certain advantages in solving
optimal problems, it is more sensitive to the initial population and has lower search efficiency in the
later stage. Therefore, the study combines PSO algorithm with faster convergence speed to compensate
for the shortcomings of GA. The PSO algorithm is a group cooperative random search algorithms.
Assuming there exists a D dimensional space, the velocity and position of particle i are updated as
shown in formula (8).{

V ij(t + 1) = ωvij(t) + c1r1 (pbestij(t) − xij(t)) + c2r2 (gbestij(t) − xij(t))
xij(t + 1) = xij(t) + vij(t + 1) (8)

In equation (8), ω represents the inertia factor; c1 represents the self-learning factor, whose value
affects the global search ability of particles; c2 represents the global learning factor, whose value affects
the ability of particles in local search; r1 and r2 represent random numbers in range of (0,1); vij(t)
and xij(t) respectively denote the velocity and position components of particle i in the jth dimension
when it evolves to the tth generation; pbestij(t) and gbestij(t) respectively denote the individual
optimum and global optimum of particle i in the jth dimension when it evolves to the tth generation;
vij(t + 1) and xij(t + 1) respectively denote the velocity and position components of particle i in the
jth dimension when it evolves to the t+1th generation. The calculation of the optimal state Ggood(t)
for all particles in the group is shown in formula (9).

Ggood(t) = min {Pgood1(t), Pgood2(t), ..., Pgoodn(t)} (9)

In equation (9), Pgoodi(t) represents the optimal solution. Although the inertia factor in PSO
algorithm increases its flexibility, its non-adjustable nature during iteration also makes it difficult for
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PSO algorithm to maintain a balanced relationship between global and local search. Therefore, the
study uses dynamic inertia weights to replace the original inertia weights, as shown in formula (10).

ωn+1 = ωn + r
fn − fn−1
|fn − fn−1|

(10)

In equation (10), ωn and ωn+1 represent the current inertia factor and the inertia factor for the
next iteration, r represents the gain coefficient, and fn and fn−1 represent the optimal fitness values
for iterations n and n−1, respectively. In summary, the specific calculation of the GA-PSO algorithm
proposed in the study is shown in Figure 3.

replace the original inertia weights, as shown in formula (10). 
\[{{\omega }_{n+1}}={{\omega }_{n}}+r\frac{{{f}_{n}}-{{f}_{n-1}}}{\left| 

{{f}_{n}}-{{f}_{n-1}} \right|}\]     （10） 
In equation (10), \[{{\omega }_{n}}\] and \[{{\omega }_{n+1}}\] represent the 

current inertia factor and the inertia factor for the next iteration, \[r\] represents the gain 
coefficient, and \[{{f}_{n}}\] and \[{{f}_{n-1}}\] represent the optimal fitness values 
for iterations \[n\] and \[n-1\], respectively. In summary, the specific calculation of the 
GA-PSO algorithm proposed in the study is shown in Figure 3. 
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Fig.3 Flowchart of GA-PSO algorithm 
2.2 Building a resource demand prediction model based on improved Bi-LSTM 

A resource scheduling model with GA-PSO algorithm is raised for the initial 
placement of VM. However, due to the heterogeneity of CP cluster resources, VM must 
dynamically adapt to the CP environment. Therefore, research will further predict the 
resource requirements of VM to solve the issue of dynamic placement of VM. The load 
of VM fluctuates nonlinearly over time, and LSTM, which is suitable for handling long-
term dependencies and nonlinear relationships, is studied for resource demand 
prediction. LSTM is built to effectively capture long-term dependencies in sequential 
data. The core idea of LSTM is the introduction of gating mechanisms, including 
forgetting gates, inputting gates, and outputting gates. Among them, the forgetting gate 
mainly controls the retention and discarding of old information, and the calculation of 
the output \[ft\] of the forgetting gate is shown in formula (11). 

\[ft=\sigma \left( Wfht-1+Vfxt+bf \right)\]    （11） 
In formula (11), \[\sigma \] represents the Sigmoid activation function, \[xt\] 

denotes the inputting at the current time, \[ht-1\] denotes the input at the previous time, 
and \[Wf\], \[Vf\], and \[bf\] are learnable parameters. The inputting gate controls the 
flow of new information, and its calculation process is shown in formula (12). 

\[\left\{ \begin{matrix} 

Figure 3: Flowchart of GA-PSO algorithm

3.2 Building a resource demand prediction model based on improved Bi-LSTM

A resource scheduling model with GA-PSO algorithm is raised for the initial placement of VM.
However, due to the heterogeneity of CP cluster resources, VM must dynamically adapt to the CP
environment. Therefore, research will further predict the resource requirements of VM to solve the
issue of dynamic placement of VM. The load of VM fluctuates nonlinearly over time, and LSTM, which
is suitable for handling long-term dependencies and nonlinear relationships, is studied for resource
demand prediction. LSTM is built to effectively capture long-term dependencies in sequential data.
The core idea of LSTM is the introduction of gating mechanisms, including forgetting gates, inputting
gates, and outputting gates. Among them, the forgetting gate mainly controls the retention and
discarding of old information, and the calculation of the output ft of the forgetting gate is shown in
formula (11).

ft = σ (Wfht − 1 + V fxt + bf) (11)

In formula (11), σ represents the Sigmoid activation function, xt denotes the inputting at the
current time, ht − 1 denotes the input at the previous time, and Wf , V f , and bf are learnable
parameters. The inputting gate controls the flow of new information, and its calculation process is
shown in formula (12). 

it = σ(Wiht − 1 + V ixi + bi)
ct = ft ⊙ ct − 1 + it ⊙ c̄t

c̄t = tanh(Wcht − 1 + V cxt + bc)
(12)
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In formula (12), it represents the state of the input gate, Wi, V i, and bi are learnable parameters,
ct, ct − 1, and c̄t denote the current, the previous, and the candidate cell states, respectively. tanh
represents the activation function. The outputting gate controls the output of the new state, and its
calculation process is shown in formula (13).{

ot = σ(Woht − 1 + V oxt + bo)
ht = ot ⊙ tanh(ct) (13)

In formula (13), ot denotes the state of the outputting gate, ht denotes the outputting at the
current time, and Wo, V o, and bo are learnable parameters. However, traditional LSTM is a uni-
directional recurrent neural network that cannot simultaneously consider the information before and
after the sequence. Therefore, to better capture long-term dependencies in the sequence and raise
the effectiveness and accuracy of the model, Bi-LSTM is studied for predicting resource demand.
Bi-LSTM combines forward and backward LSTM, which can simultaneously process backward and
forward information of sequence data. Its structural schematic is denoted in Figure 4.

   it=\sigma (Wiht-1+Vixi+bi)  \\ 
   ct=ft\odot ct-1+it\odot \bar{c}t  \\ 

   \bar{c}t=\tanh (Wcht-1+Vcxt+bc)  \\ 
\end{matrix} \right.\]     （12） 

In formula (12), \[it\] represents the state of the input gate, \[Wi\], \[Vi\], and \[bi\] 
are learnable parameters, \[ct\], \[ct-1\], and \[\bar{c}t\] denote the current, the previous, 
and the candidate cell states, respectively. \[\tanh \] represents the activation function. 
The outputting gate controls the output of the new state, and its calculation process is 
shown in formula (13). 

\[\left\{ \begin{matrix} 
   ot=\sigma (Woht-1+Voxt+bo)  \\ 

   ht=ot\odot \tanh (ct)  \\ 
\end{matrix} \right.\]    （13） 

In formula (13), \[ot\] denotes the state of the outputting gate, \[ht\] denotes the 
outputting at the current time, and \[Wo\], \[Vo\], and \[bo\] are learnable parameters. 
However, traditional LSTM is a unidirectional recurrent neural network that cannot 
simultaneously consider the information before and after the sequence. Therefore, to 
better capture long-term dependencies in the sequence and raise the effectiveness and 
accuracy of the model, Bi-LSTM is studied for predicting resource demand. Bi-LSTM 
combines forward and backward LSTM, which can simultaneously process backward 
and forward information of sequence data. Its structural schematic is denoted in Figure 
4. 
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LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM
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Fig.4 Structure diagram of Bi-LSTM 
The calculation of the output \[{{O}_{t}}\] of Bi-LSTM at time \[t\] is shown in 

formula (14). 
\[\left\{ \begin{matrix} 

   {{{\vec{h}}}_{t}}=f({{w}_{1}}{{x}_{t}}+{{w}_{2}}{{h}_{t-1}})  \\ 
   

{{{\overset{\scriptscriptstyle\leftarrow}{h}}}_{t}}=f({{w}_{3}}{{x}_{t}}+{{w}_{
4}}{{h}_{t+1}})  \\ 

   
{{O}_{t}}=g({{w}_{5}}{{{\vec{h}}}_{t}}+{{w}_{6}}{{{\overset{\scriptscriptstyl

e\leftarrow}{h}}}_{t}})  \\ 

Figure 4: Structure diagram of Bi-LSTM

The calculation of the output Ot of Bi-LSTM at time t is shown in formula (14).
h⃗t = f(w1xt + w2ht−1)
←
ht = f(w3xt + w4ht+1)
Ot = g(w5h⃗t + w6

←
ht)

(14)

In formula (14), h⃗t means the forward layer output at time t, w means the weight, xt means the
inputting, ht−1 means the outputting at the previous time, ht−1 means the reverse layer outputting
at time t, and ht+1 means the outputting at the next time. To better fit the CP scenario and
raise the prediction accuracy and efficiency of Bi-LSTM, attention mechanism and WOA are further
introduced to improve Bi-LSTM, and a WOA-Attention-Bi-LSTM algorithm is proposed. Firstly, the
study utilizes attention mechanisms to assign different weights to the hidden states of Bi-LSTM, to
enhance the influence of key data and reduce the loss of past information. The attention mechanism
facilitates the model’s capacity to selectively concentrate on salient aspects of the input data, while
disregarding superfluous information. This enhances the whole effectiveness and resilience of the
system [19, 20]. The calculation of attention mechanism is denoted in formula (15).

Attention(Q, K, V ) = soft max
(

QKT

√
dk

)
V (15)

In formula (15), Q indicates query, K refers to key, and V expresses value. Secondly, to address
the issue of Bi-LSTM requiring a significant amount of time to customize hyperparameters, WOA
is brought to automatically optimize the hyperparameters of the network model. WOA represents
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an innovative heuristic optimization algorithm inspired by the hunting behavior patterns observed in
natural humpback whale populations. The core idea is to explore the best solution to the issue by
simulating the self-organization and adaptability of whale populations [21]. The encirclement strategy
of WOA is shown in formula (16). {

D = |CX∗ (t) − X (t)|
X (t + 1) = X∗ (t) − AD

(16)

In equation (16), D means the distance between the individual’s position and the optimal position
at t iterations, X∗ (t) means the position of the prey, X (t) represents the current position of the whale,
X (t + 1)represents the position of the whale at the next moment, and C and A are two coefficient
vectors. WOA’s bubble net attack simulates the hunting behavior of humpback whales, including
spiral updates and contraction encirclement, as shown in formula (17).{

X (t + 1) = D
′
ebl cos(2π) + X∗ (t)

D
′ = |X∗ (t) − X (t)| (17)

In equation (17), b controls the shape of the spiral, and l represents a random number. The random
search phase of WOA is shown in formula (18).{

D = |CXrand (t) − X (t)|
X (t + 1) = Xrand (t) − AD

(18)

In equation (18), Xrand (t) indicates the random position of the prey. The target of the study is
to reduce the mean square error between the actual and expected outputs of the Attention-Bi-LSTM
model, which serves as the fitness function, and solve it using WOA. In summary, the calculation
method of the resource demand forecasting model based on the WOA-Attention-Bi-LSTM algorithm
is shown in Figure 5.

   X\left( t+1 \right)={{X}_{rand}}\left( t \right)-AD  \\ 
\end{matrix} \right.\]     （18） 
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Fig.5 Flowchart of resource demand prediction model based on WOA-Attention-

Bi-LSTM algorithm 
3. Results and discussion 

A resource scheduling model based on GA-PSO algorithm and a resource demand 
prediction model based on improved Bi-LSTM were proposed, but their performance 
still needs further validation. The research mainly analyzed from two aspects. Firstly, it 
analyzed the feasibility of the resource scheduling model based on GA-PSO algorithm. 
Then, it verified the predictive performance of the resource requirement forecast model 
based on the improved Bi-LSTM. 
3.1 Feasibility analysis of resource scheduling model 

To verify the feasibility of the resource scheduling model based on GA-PSO 
algorithm, simulation experiments were conducted on CloudSim 4.0 using Windows 10 
operating system and Intel (R) Core (TM) i5-1035G1 processor. The experiment used 
50 physical nodes, with a host memory of 24GB, a bandwidth of 1200Mbps, 
specifications of CPU 1000MIPS, 2000 MIPS, and 3000 MIPS, 200 VM, 2GB of 
memory, 200Mbps of bandwidth, with specifications of CPU250 MIPS, 500 MIPS, and 
750 MIPS. The study set the amount of iterations to 200, the initial population to 20, 
the inertia weight to 0.5, the learning factor to 1, the crossover probability to 0.8, and 
the mutation probability to 0.05. Using resource waste rate and energy consumption as 
evaluation indicators, the GA-PSO algorithm was compared with traditional GA, PSO 

Figure 5: Flowchart of resource demand prediction model based on WOA-Attention-Bi-LSTM algo-
rithm

4 Results and discussion
A resource scheduling model based on GA-PSO algorithm and a resource demand prediction model

based on improved Bi-LSTM were proposed, but their performance still needs further validation.
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The research mainly analyzed from two aspects. Firstly, it analyzed the feasibility of the resource
scheduling model based on GA-PSO algorithm. Then, it verified the predictive performance of the
resource requirement forecast model based on the improved Bi-LSTM.

4.1 Feasibility analysis of resource scheduling model

To verify the feasibility of the resource scheduling model based on GA-PSO algorithm, simulation
experiments were conducted on CloudSim 4.0 using Windows 10 operating system and Intel (R) Core
(TM) i5-1035G1 processor. The experiment used 50 physical nodes, with a host memory of 24GB, a
bandwidth of 1200Mbps, specifications of CPU 1000MIPS, 2000 MIPS, and 3000 MIPS, 200 VM, 2GB
of memory, 200Mbps of bandwidth, with specifications of CPU250 MIPS, 500 MIPS, and 750 MIPS.
The study set the amount of iterations to 200, the initial population to 20, the inertia weight to 0.5,
the learning factor to 1, the crossover probability to 0.8, and the mutation probability to 0.05. Using
resource waste rate and energy consumption as evaluation indicators, the GA-PSO algorithm was
compared with traditional GA, PSO algorithms, and greedy algorithms. The outcomes are denoted
in Figure 6. From Figure 6 (a), among the four algorithms, the GA-PSO algorithm had the lowest
resource waste rate of 16.34%. Next was the greedy algorithm, with the GA having the highest resource
waste rate, reaching 20.07%. From Figure 6 (b), as the number of VM increased, energy consumption
also gradually increased. Among them, the energy consumption of GA-PSO algorithm was always
lower than the other three algorithms. When the amount of VM was 200, the energy consumption was
6.19kW/h. The PSO algorithm performed the worst in terms of energy consumption. The outcomes
indicated that the resource scheduling model based on GA-PSO algorithm proposed by the research
could effectively schedule CP resources and had certain feasibility.
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Fig.6 Comparison of resource waste rate and energy consumption among four 

algorithms 
To investigate the stability of the GA-PSO algorithm, the amount of VM was set 

to 10, 20, and 30, and the completion times of the four algorithms were compared. The 
results are shown in Figure 7. Comparing Figures 7 (a), (b), and (c), under different 
numbers of VM and tasks, the completion time of the GA-PSO algorithm was always 
the shortest, not exceeding 2000ms, demonstrating good stability. The GA had the 
longest completion time and experienced significant performance fluctuations when 
handling large-scale tasks. The results indicated that even in situations with large task 
volumes, the GA-PSO algorithm could still maintain good optimization performance 
and had good stability. 

Figure 6: Comparison of resource waste rate and energy consumption among four algorithms

To investigate the stability of the GA-PSO algorithm, the amount of VM was set to 10, 20, and 30,
and the completion times of the four algorithms were compared. The results are shown in Figure 7.
Comparing Figures 7 (a), (b), and (c), under different numbers of VM and tasks, the completion time of
the GA-PSO algorithm was always the shortest, not exceeding 2000ms, demonstrating good stability.
The GA had the longest completion time and experienced significant performance fluctuations when
handling large-scale tasks. The results indicated that even in situations with large task volumes, the
GA-PSO algorithm could still maintain good optimization performance and had good stability.

To investigate the efficiency of the GA-PSO algorithm, experiments were conducted using the
Azure VM packing trace dataset to extract virtual machine creation requests. The average running
time of GA-PSO algorithm for solving problems of different dimensions was compared with GA, PSO
algorithm, Differential Evolution (DE) algorithm, and Artificial Bee Colony (ABC) algorithm, with
each algorithm running independently 20 times. The outcomes are indicated in Table 1. From Table 1,
among the five algorithms, the GA-PSO algorithm proposed by the research had the shortest average
running time. When the problem dimensions were 10, 20, 30, 40, and 50, the average running time
was 0.65s, 0.99s, 1.42s, 1.84s, and 2.36s, respectively, which was significantly lower than the other four
algorithms. Next was the ABC algorithm, and the GA had the longest average running time. The
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Fig.7 Comparison of completion times for four algorithms 
To investigate the efficiency of the GA-PSO algorithm, experiments were 

conducted using the Azure VM packing trace dataset to extract virtual machine creation 
requests. The average running time of GA-PSO algorithm for solving problems of 
different dimensions was compared with GA, PSO algorithm, Differential Evolution 
(DE) algorithm, and Artificial Bee Colony (ABC) algorithm, with each algorithm 
running independently 20 times. The outcomes are indicated in Table 1. From Table 1, 
among the five algorithms, the GA-PSO algorithm proposed by the research had the 
shortest average running time. When the problem dimensions were 10, 20, 30, 40, and 
50, the average running time was 0.65s, 0.99s, 1.42s, 1.84s, and 2.36s, respectively, 
which was significantly lower than the other four algorithms. Next was the ABC 
algorithm, and the GA had the longest average running time. The results indicated that 
the GA-PSO algorithm had high computational efficiency. 

Table 1 Comparison of average running time of five algorithms 
Problem 

dimension 
10 20 30 40 50 

GA 3.91s 5.52s 7.44s 9.62s 12.17s 
PSO 3.65s 5.28s 7.17s 9.40s 11.88s 
DE 3.32s 4.83s 6.54s 8.67s 10.98s 

ABC 2.18s 3.54s 5.22s 7.16s 9.56s 
GA-PSO 0.65s 0.99s 1.42s 1.84s 2.36s 

3.2 Performance analysis of resource demand forecasting model 
To verify the predictive performance of the WOA-Attention-Bi-LSTM algorithm 

proposed by the research, experiments were conducted using the Azure VM packing 
trace dataset. The convergence curve of the WOA-Attention-Bi-LSTM algorithm was 
compared with the Moth Swarm Algorithm (MSA), WOA algorithm, GA, and PSO 
algorithm. The convergence curves of the five algorithms are shown in Figure 8. From 
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results indicated that the GA-PSO algorithm had high computational efficiency.

Table 1: Comparison of average running time of five algorithms
Problem dimension 10 20 30 40 50

GA 3.91s 5.52s 7.44s 9.62s 12.17s
PSO 3.65s 5.28s 7.17s 9.40s 11.88s
DE 3.32s 4.83s 6.54s 8.67s 10.98s

ABC 2.18s 3.54s 5.22s 7.16s 9.56s
GA-PSO 0.65s 0.99s 1.42s 1.84s 2.36s

4.2 Performance analysis of resource demand forecasting model

To verify the predictive performance of the WOA-Attention-Bi-LSTM algorithm proposed by the
research, experiments were conducted using the Azure VM packing trace dataset. The convergence
curve of the WOA-Attention-Bi-LSTM algorithm was compared with the Moth Swarm Algorithm
(MSA), WOA algorithm, GA, and PSO algorithm. The convergence curves of the five algorithms
are shown in Figure 8. From Figure 8 (a), when the problem size was 500, the WOA-Attention-Bi-
LSTM algorithm had the fastest convergence speed and tended to converge at around 100 epochs.
From Figure 8 (b), when the problem size was 1500, the convergence speed of the WOA-Attention-
Bi-LSTM algorithm was still better than the other four algorithms, and tended to converge at around
150 iterations. The results indicated that the WOA-Attention-Bi-LSTM algorithm proposed by the
research had good convergence performance, fast convergence speed, and better fitness.

To verify the predictive efficiency of the WOA-Attention-Bi-LSTM algorithm proposed by the
research, the running time of the above algorithms was compared, and the outcomes are denoted
in Figure 9. From Figure 9, compared to the other four algorithms, the WOA-Attention-Bi-LSTM
algorithm always had the longest running time at different problem scales. When the problem scale was
3500, the running time was 26760s, but it was still within an acceptable range. This may be because
the improvement strategy proposed by the research not only enhanced the predictive effectiveness of
the algorithm, but also increased the complexity of the model. The MSA had the shortest running
time.

To assess the performance of the raised improvement strategy, ablation experiments were con-
ducted. The prediction accuracy and recall of Bi-LSTM, Attention Bi-LSTM, WOA Bi-LSTM, and
WOA-Attention-Bi-LSTM were compared. The outcomes of the ablation experiment are denoted in
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Figure 8 (a), when the problem size was 500, the WOA-Attention-Bi-LSTM algorithm 
had the fastest convergence speed and tended to converge at around 100 epochs. From 
Figure 8 (b), when the problem size was 1500, the convergence speed of the WOA-
Attention-Bi-LSTM algorithm was still better than the other four algorithms, and 
tended to converge at around 150 iterations. The results indicated that the WOA-
Attention-Bi-LSTM algorithm proposed by the research had good convergence 
performance, fast convergence speed, and better fitness. 
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Fig.8 Convergence curves of five algorithms 
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Fig.9 Comparison of running time of five algorithms 
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To assess the performance of the raised improvement strategy, ablation 
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Figure 10. From Figure 10 (a), among the four models, the WOA-Attention-Bi-LSTM model had
the highest forecast accuracy of 94.35%. Next was the WOA-Bi-LSTM model, with a forecast accu-
racy of 90.41%. The Bi-LSTM model had the lowest prediction accuracy. From Figure 10 (b), the
WOA-Attention-Bi-LSTM model also performed well in terms of recall rate, with the rate of 93.62%.
The results indicated that both the attention mechanism and WOA algorithm proposed by the re-
search could effectively improve the predictive performance of Bi-LSTM, and had certain feasibility
and effectiveness.

To investigate the practical application effect of a resource demand prediction model based on
improved Bi-LSTM, the memory usage prediction curve of the WOA-Attention-Bi-LSTM model was
compared with that of traditional LSTM. The results are shown in Figure 11. Comparing Figures
11 (a) and (b), the overall prediction performance of traditional LSTM was good, but there was still
a problem of overestimation, and the prediction performance was not stable enough. The prediction
curve of the WOA-Attention-Bi-LSTM model had a high degree of coincidence with the true value,
and there was almost no estimation problem, demonstrating good predictive performance. The results
indicated that the resource demand prediction model based on improved Bi-LSTM could effectively
predict CP resource demand with high accuracy and certain effectiveness.
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To investigate the practical application effect of a resource demand prediction 
model based on improved Bi-LSTM, the memory usage prediction curve of the WOA-
Attention-Bi-LSTM model was compared with that of traditional LSTM. The results 
are shown in Figure 11. Comparing Figures 11 (a) and (b), the overall prediction 
performance of traditional LSTM was good, but there was still a problem of 
overestimation, and the prediction performance was not stable enough. The prediction 
curve of the WOA-Attention-Bi-LSTM model had a high degree of coincidence with 
the true value, and there was almost no estimation problem, demonstrating good 
predictive performance. The results indicated that the resource demand prediction 
model based on improved Bi-LSTM could effectively predict CP resource demand with 
high accuracy and certain effectiveness. 
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Fig.11 Comparison of memory usage prediction results 
4. Conclusion 

To fully utilize resources on cloud platforms, a resource scheduling model based 
on GA-PSO algorithm and a resource demand prediction model based on improved Bi-
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To investigate the practical application effect of a resource demand prediction 
model based on improved Bi-LSTM, the memory usage prediction curve of the WOA-
Attention-Bi-LSTM model was compared with that of traditional LSTM. The results 
are shown in Figure 11. Comparing Figures 11 (a) and (b), the overall prediction 
performance of traditional LSTM was good, but there was still a problem of 
overestimation, and the prediction performance was not stable enough. The prediction 
curve of the WOA-Attention-Bi-LSTM model had a high degree of coincidence with 
the true value, and there was almost no estimation problem, demonstrating good 
predictive performance. The results indicated that the resource demand prediction 
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4. Conclusion 

To fully utilize resources on cloud platforms, a resource scheduling model based 
on GA-PSO algorithm and a resource demand prediction model based on improved Bi-
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5 Conclusion
To fully utilize resources on cloud platforms, a resource scheduling model based on GA-PSO al-

gorithm and a resource demand prediction model based on improved Bi-LSTM were proposed. The
results showed that the resource waste rate of GA-PSO algorithm was 16.34%, which was lower than
traditional GA, PSO algorithm and greedy algorithm. As the amount of VM increased, energy con-
sumption also gradually increased. When the amount of VM was 200, the energy consumption of the
GA-PSO algorithm was 6.19 kW/h. Under different numbers of VM and tasks, the GA-PSO algorithm
consistently had the shortest completion time, not exceeding 2000ms, demonstrating good stability.
The average running time of GA-PSO algorithm was the shortest. When the problem dimensions were
10, 20, 30, 40, and 50, the average running time was 0.65s, 0.99s, 1.42s, 1.84s, and 2.36s, respectively.
When the problem size was 500, the WOA-Attention-Bi-LSTM algorithm had the fastest convergence
speed and tended to converge at around 100 epochs. When the problem size was 1500, the convergence
speed of the WOA-Attention-Bi-LSTM algorithm was still better than the other four algorithms, and
tended to converge at around 150 iterations. The WOA-Attention-Bi-LSTM algorithm always had the
longest running time at different problem scales. When the problem scale was 3500, the running time
was 26760s, but it was still within an acceptable range. The WOA-Attention-Bi-LSTM model had the
highest prediction accuracy and recall rate, at 94.35% and 93.62%, respectively. In summary, the pro-
posed model has good resource scheduling performance and resource demand prediction performance.
However, the efficacy of the WOA-Attention-Bi-LSTM algorithm proposed by the research still needs
to be raised in terms of operational efficiency. Accordingly, future research should focus on further
developing methodologies to enhance model efficiency while maintaining predictive performance, thus
enabling more accurate forecasting of CP resource requirements.
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