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Abstract

Imbalanced data classification remains a significant challenge in machine learning, particularly
in decision tree algorithms where majority class features are often overshadowed. This study
introduces a novel split index based on class key decision factor (CKD factor) to address this
issue. We propose two new algorithms: Split Difference Decision Tree (SDDT) and Weighted Split
Difference Classification and Regression Tree (WSD-CART). These algorithms enhance feature
expression for majority classes during node splitting, thereby improving classification performance
on imbalanced datasets. Experiments conducted on five UCI datasets with varying imbalance
levels demonstrate the effectiveness of our approach. The WSD-CART algorithm consistently
outperformed traditional methods, showing significant improvements in F-score, AUC, precision,
recall, and accuracy, particularly for majority classes. In a real-world application to space product
material classification, our method increased the true positive rate for majority class identification
from 66.32% to 76.17%, while maintaining high overall accuracy. This study contributes to the
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field of imbalanced learning by providing a new perspective on decision tree split criteria. The
proposed methods offer both improved classification performance and interpretable decision rules,
making them valuable for various domains dealing with imbalanced data.

Keywords: imbalanced classification, class key decision factor, split difference decision tree,
weighted split difference classification and regression tree.

1 Introduction
Classification problems are a fundamental aspect of machine learning, aiming to categorize data

points into predefined classes based on their attributes. The accuracy and reliability of classification
algorithms are crucial as they directly impact decision-making processes [1]. One significant challenge
in classification tasks is handling imbalanced data, where some classes (majority classes) have far
fewer samples than others (majority classes) [2]. This imbalance can severely affect the performance
of standard classification algorithms, leading to poor accuracy in identifying majority class instances,
which are often the most critical to detect [3].

In recent years, imbalanced data classification has been widely studied in fields such as medical
analysis [4], fault diagnosis[5] [6], fraud detection [7], and network intrusion detection [8]. Among
these, ensemble algorithms, as a popular topic in machine learning, are often chosen as effective meth-
ods to address imbalanced data classification [9]. The decision tree (DT) has become the preferred base
classifiers in ensemble learning due to several advantages [10]. They are inherently interpretable, pro-
viding clear and explicit classification rules, which allows for easy understanding and communication
of the model decision process, crucial in practical applications [11]. Moreover, decision trees are adept
at modeling complex decision boundaries. Their hierarchical structure recursively splits data based
on feature values, making them sensitive to data sample perturbations and enabling the capture of
intricate patterns within the data. Traditional DT classifiers, such as ID3, CART, and C4.5, use class
sample probabilities as the split index. The performance of a tree can be influenced by its split index.
While these methods are effective in distinguishing different class samples in balanced classifications,
they may lead to reduced accuracy in identifying majority classes in imbalanced classifications, as the
features of the majority classes can be overshadowed by those of the majority classes [12].

To address this, various methods have been proposed to tune the split index of DT nodes. Existing
methods such as the DKM split index [13], designed to enhance DT induction, primarily favor the ma-
jority class and do not effectively mitigate class imbalance. Similarly, the Hellinger distance, proposed
as a distribution divergence measure [14], offers some skew-insensitivity but still lacks comprehensive
handling of class distribution disparities. To bridge this gap, the article [15] introduces α-divergence,
a novel scalar parameterized split index that focuses on generating diversified base classifiers through
variable splitting (diversification) within DTs. Despite its demonstrated benefits in handling imbal-
anced data and enhancing diversity in ensemble learning contexts, α-divergence poses challenges in
terms of interpretability. Contrary to DKM, majority entropy [16] is a purity measure that specifically
evaluates partitioning of majority class samples. It improves the inductive capabilities of DTs by re-
ducing the number of majority samples outside the range of the majority class. It has been shown to
outperform the aforementioned indexes in various classification evaluation, but it may overlook overall
class balance and could potentially lead to overfitting in certain scenarios.

These methods mainly focus on node purity without considering class distribution differences
between child nodes. This can result in nodes reflecting majority class characteristics, necessitating
deeper splits. CCPDT has modified the traditional confidence measure to focus on the sample size
within each class, rather than the sample size within each child node [17]. Research proposes a new
split index that allows one side of the split to generate highly homogeneous rules[18]. Besides, Lv
et al. [19] proposed the concept of a CKD factor that integrates class dispersion and class decision
degree, achieving a fair representation of majority class characteristics in the class label determination
of leaf nodes. Inspired by the perspectives, this article shifts the focus of building DT node splitting
criteria for imbalanced classification to simultaneously evaluate the class disparity between the split
child nodes and the homogeneity within the nodes.

Despite these advancements, a significant gap remains in achieving a balance between node purity
and class distribution differences between child nodes. Existing methods often focus on one aspect
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while neglecting the other, leading to DTs that may still be biased towards majority classes. Therefore,
a more comprehensive approach is required to enhance the representation of majority classes without
compromising overall classification accuracy.

This article aims to improve the node split index of DTs for accurate identification of majority
classes in imbalanced classification. The main contributions are as follows:

• A Split Difference Decision Tree (SDDT) is constructed. Based on the concept of the CKD factor,
the algorithm proposes a new split difference index, achieving fair representation of features from
majority classes in the classification of imbalanced samples. Compared to other methods, this
index comprehensively evaluates both intra-node and inter-node dispersion differences in classes,
as well as inheritance differences, rather than just class sample distribution and dispersion.

• Weighted Split Difference Classification and Regression Tree (WSD-CART) is constructed. By
weighting the split difference with the Gini index, the algorithm combines the purity measure
with split difference characteristics to construct a CART classification algorithm weighted by
split difference, ensuring fair evaluation of all classes in imbalanced datasets.

The rest of the article is organized as follows. Section 2 presents the preliminaries related to
this research. Section 3 presents the theory and method of the split index, including two algorithms.
Section 4 conducts an experiment on the public UCI datasets and an application for space product
material classification. The article is concluded in Section 5.

2 Research foundation
Section 2.1 takes the Gini index, the classic node split index of the CART for binary classification

as an example, pointing out its advantages and shortcomings in the DT classification process, espe-
cially the defects in the imbalanced classification (the same applies to other classic DT classification
algorithms). Section 2.2 describes related concepts of CKD factor proposed by [19] and clarifies its
significance in determining leaf node class labels in imbalanced classification, laying the theoretical
groundwork for the next section to construct new node split index based on the concept of CKD factor.

2.1 Analysis of traditional decision tree split indexes

Considering sample distribution of the DT leaf nodes presented in Table 1 as an illustrative case,
assume that a given DT non-leaf node Rj=0, under the condition that attribute Ak = a, the sample
set Dj=0 on node Rj=0 is divided into two parts, Dj=1 (left node Rj=1) and Dj=2 (right node Rj=2),
where Dj=1 = (p1, n1), Dj=2 = (p2, n2), Dj=0 = (p, n)|p = p1 + p2, n = n1 + n2, with p representing
the number of positive samples P , and n representing the number of negative samples N .

Table 1: Example of sample distribution of leaf nodes
Parent node Leaf node C0 C1 Total

Rj=0(p, n) Rj=1(p1, n1) p1 = 800 n1 = 20 p1 + n1 = 820
Rj=2(p2, n2) p2 = 200 n2 = 180 p2 + n2 = 380

Total p1 + p2 = 1000 n1 + n2 = 200

For the binary classification problem above, the Gini index of the probability distribution at the
non-leaf node Rj=0 could be transformed into:

Gini(Dj=0) = 2pn/(p + n)2 (1)

Under the condition that attribute Ak = a, the conditional Gini index could be transformed into:

Gini(Dj=0, Ak = a) = p1n1
p1 + n1

· 2
p1 + n1

+ p2n2
p2 + n2

· 2
p2 + n2

(2)

Gini(Dj=0, Ak = a) = 2
p + n

(
p1n1

p1 + n1
+ p2n2

p2 + n2

)
(3)
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Gini(Dj=0) represents the uncertainty of the set Dj=0, and Gini(Dj=0, Ak = a) represents the
uncertainty of the setDj=0 after being split by Ak = a. The smaller the Gini(Dj=0, Ak = a), the
higher the purity of the samples in the child nodes after the split.

Based on formulas (2) and (3), analyze the composition and advantages of the Gini index:
(1) It can evaluate the dispersion of the parent node sample in child nodes. In formula (2), the

proportion of the sample of the split left and right nodes to the parent node sample size are p1+n1
p+n ,

p2+n2
p+n , that are evaluations regarding the probability distribution of samples. If p + n is constant, to

make the Gini index as small as possible, the difference between (p1 + n1) and (p2 + n2) should be as
large as possible;

(2) It can evaluate the comprehensive ability of different classes to make majority decisions in each
child node. In formula (2), the products of the probabilities of the majority class in the samples of the
left and right split nodes are given by p1n1

(p1+n1)2 and p2n2
(p2+n2)2 , respectively. If (p1 +n1) and (p2 +n2) are

constant, to make the Gini index smaller, the larger the difference between p1 and n1 and the larger
the difference between p2 and n2 are needed.

The aforementioned analysis holds true for balanced datasets but falters in imbalanced classification
scenarios, where the inherent disparity in the number of positive and negative samples precludes
accurate recognition of the majority class with such classification preference.

Similar to prevalent DT algorithms, including ID3, gain ratio, and most improvements [20] [21]
[22] to split index, the Gini index lacks the capability to assess class differences between left and
right sub-nodes post-splitting. In formula (3), p + n is constant, a smaller Gini index requires a larger
difference between p1 and n1, as well as between p2 and n2. However, even if p1 > n1 and p2 > n2, both
maintaining substantial differences, the resulting left and right child nodes may exhibit no discernible
class differences. Especially in imbalanced classification, this defect will be more obvious.

As shown in Table 1, based on the Gini index, the parent node Rj=0(1000 : 200), is partitioned
into two leaf nodes: Rj=1(800 : 20) and Rj=2(200 : 180). Here C1 and C0 signify the two classes in the
binary classification problem, with C1 being the minority class. During the tree’s construction, the Gini
index tends to select the majority class (C0) as the splitting point in order to maximize classification
performance. However, this predisposition can result in overfitting the generated DT towards class
C0, ultimately diminishing its capability to identify samples belonging to class C1. Consequently, as
evident from Table 1, both child nodes (Rj=1 and Rj=2) might inadvertently become dominated by
class C0, due to conditions 800 > 20, 200 > 180.

In summary, the logic of node splitting by the Gini index (including the majority of DT split
indexes) can be generalized as dividing by the mainstream, not by the class feature [23]. Such idea
easily leads to the split child nodes being dominated by the majority class, causing the classification
features of the majority class to be unrecognized. At the same time, it is easy for the class features
of two child nodes to be indistinguishable after splitting, forcing the classification model to explore
deeper layers, thus reducing classification efficiency.

Therefore, this article attempts to propose a new DT node split index to address the issue that the
Gini index does not consider the inability of small sample classes to vote due to low sample probability
in imbalanced classifications.

2.2 Concepts related to leaf node class key decision factor

In reviewing the outcomes presented in Table 1, it is evident that the class label of the leaf nodes is
assigned according to the "majority rule", whereby the class with the greater number of samples within
a node is selected—hence, node Rj=2 is categorized as class C0. However, a closer inspection reveals
that an overwhelming 90% of class C1 samples are actually allocated to this same leaf node Rj=2.
Given that C1 represents the minority class, its numerical inferiority impedes the fair representation
of its class characteristics, thereby contradicting the fundamental goal of classification.

The purpose of classification is to derive scientific classification rules through equitable treatment
and exploration of the distinct features from different classes, and to reflect objectively existing pat-
terns, rather than basing decisions simply on sample probabilities. Therefore, to address the issue
of determining leaf node class labels in the classification of imbalanced samples, the CKD factor has
been proposed [19]. Below are the relevant definitions pertaining to this index.
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Assuming there is a leaf node Rj , with a set of sample classes C = {Ci | i = 0, 1, 2, 3, . . . , I},
where |Ci| denotes the number of samples belonging to class Ci, and Cj

i represents the set of samples
belonging to class Ci in leaf node Rj , |Cj

i | denotes the number of samples in Cj
i .

Definition 1. Leaf Node Class Dispersion αij

Represents the degree of dispersion of class Ci in leaf node i.e., the proportion of the number of
Ci class samples in node Rj to the total number of Ci class samples in the entire set.

αij = |Cj
i |

|Ci|
(4)

Definition 2. Leaf Node Class Decision Degree βij

Represents the authoritative strength of class Ci samples in leaf node Rj , that is, the proportion
of the number of Ci class samples in node Rj to the total number of samples in node Rj .

βij = |Cj
i |∑n

i=1|Ci|
(5)

Based on formulas (4) and (5) , it can be understood that both αij and βij have a value range of
[0,1]. The larger the value of αij , the more concentrated the characteristics of that class are reflected
in the node. Similarly, the larger the value of βij , the stronger the majority voting power of that class
within the node. Therefore, combining the two leads to the following Definition 3.

Definition 3. Leaf Node CDK Factor dij

The product of the leaf node class dispersion and the class decision degree.

dij = αijβij = |Cj
i |

|Ci|
· |Cj

i |∑n
i=1|Cj

i |
(6)

The leaf node CDK factor is used to comprehensively measure the performance strength of each
class in the leaf node, dij ∈ [0, 1].

The Gini index adheres to the principle of majority voting, and both it and dij consider βij ,
while the introduction of αij in dij incorporates the inheritance ratio of the class samples in the leaf
nodes from the total class samples into the determination of the leaf node class labels. This reflects
the membership degree of the class samples to all attribute features of the leaf node after being
progressively divided layer by layer. Although the minority class is at a disadvantage in terms of
sample quantity (i.e., βij is smaller), if it achieves a higher αij value compared to the majority class,
it can still attain the same comprehensive expression strength of node features as the majority class.
Therefore, the CKD factor is more suitable for imbalanced classification than the Gini index.

The larger the dij , the greater the likelihood that class Ci will be the classification label in node
Rj . When categorizing a leaf node based on its CDK factor, the class with the highest dij is chosen
as the classification label, not the one with the largest sample size. Hence, a leaf node class feature
recognition mode Lj based on CDK factor is defined, as illustrated in formula (7).

Lj = Ci (where dij = max(dIj), i ∈ {1, 2, . . . , I}) (7)

Calculate αij , βij , dij , and Lj for each class of the leaf nodes in Table 1, as shown in Table 2.

• Comparative analysis of leaf node Rj=1 class label determination: If based on the traditional
DT algorithm, the leaf node Rj=1 would be labeled as class C0 due to the larger proportion of
C0 class samples. However, if based on the leaf node CDK factor, according to formula (7), the
CDK factor value of C0 is greater than that of C1, leading to the same determination that the
class label of Rj=1 is C0.
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• Comparative analysis of leaf node Rj=2 class label determination: If based on the traditional DT
algorithm, the leaf node Rj=2 would be labeled as class C0 due to the larger proportion of C0
class samples. However, if based on the leaf node CDK factor, the class label of Rj=2 class label
should be C1. The two rules yield inconsistent results because the CKD factor, after integrating
the αij , allows the majority class C1, which inherits the sample probability from the same class
in the root node, to fully exert its influence in the identification of the leaf node class label.

Table 2: Class feature recognition results of leaf node for Table 1
Node Class αij βij dij Lj

Rj=1
C(i=0) 0.800 0.976 0.781

L(j=1) = C0
C(i=1) 0.100 0.024 0.002

Rj=2
C(i=0) 0.200 0.526 0.105

L(j=2) = C1
C(i=1) 0.900 0.474 0.462

In summary, the class decision degree has a similar capability to evaluate the sample class proba-
bility as authority, expressing the authoritativeness of the sample class. The class dispersion degree
αij calculates the inheritance probability of the leaf node sample class from the root node sample class,
eliminating the impact of uneven sample distribution on the leaf node class determination. Compared
with the Gini index, the application of the CKD factor index, which integrates αij and βij , in the
identification of leaf node classes, can better compensate for the deficiencies in the classification voting
of majority class samples in imbalanced datasets.

3 Theory and Method of Split Difference
To address the issue of improving accuracy in imbalanced classification problems, this section

proposes a splitting criterion of DT nonleaf nodes named the Split Difference Index γ, based on the
research foundation. The construction mechanism of γ is clarified in Subsection 3.1. A Split Difference
Decision Tree algorithm (SDDT) is constructed in Subsection 3.2 and a Weighted Split Difference
Classification and Regression Tree algorithm (WSD_CART) is constructed in Subsection 3.3. These
methods are designed to enhance the overall classification performance of the sample by improving
the feature representation ability of majority classes. Additionally, the computational complexity of
the algorithms is analyzed separately following the algorithm steps.

3.1 CKD factor oriented to split processes of non leaf node

Based on analyzing the role of CKD factor in leaf node class label determination and the short-
comings of traditional split indexes, the feasibility of proposing a non leaf node split index for DTs
based on CKD factor is studied.

Unlike calculating CKD factor under a determined sample distribution of leaf node, the splitting
of non leaf nodes is a dynamic exploration of optimal splitting points. Therefore, the following series
of concepts are redefined.

Definition 4. Class Dispersion Degree of Subnode αs
ij during Splitting

Represents the dispersion degree of class Ci in subnode Rj , i.e., the proportion of the number of
Ci class samples in node Rj to the number of Ci class samples in parent node Rj−1 .

αs
ij = |Cj

i |
|Cj−1

i |
(8)

Definition 4 differs from Definition 1. For imbalanced classification, Definition 1 takes a global
perspective and analyzes the proportion of samples of each class in the leaf nodes that are inherited
from the samples of each class in the total sample set. In contrast, Definition 4 views the parent node
as the root node of a single splitting process and analyzes the proportion of samples of each class in
child nodes that are inherited from those of the parent node.
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Definition 5. Class Decision Degree of Subnode βs
ij during Splitting

Represents the authority of class Ci samples in subnode Rj , i.e., the proportion of Ci class samples
in node Rj relative to the total number of samples in node Rj . This definition is consistent with the
content of Definition 2.

βs
ij = |Cj

i |∑n
i=1|Cj

i |
(9)

According to formulas (8) and (9), αs
ij ∈ [0, 1], βs

ij ∈ [0, 1]. A larger value of αs
ij indicates that

the characteristics of the class are more concentrated in that child node, while a larger βs
ij indicates

a stronger majority voting power of the class in the child node. Similarly, αs
ij and βs

ij are used to
construct the CKD factor of the child node during the splitting process.

Definition 6. CKD Factor of Subnode ds
ij during Splitting

The product of αs
ij and βs

ij , to measure the strength of feature representation of each class in the
child nodes generated by the node split.

ds
ij = αs

ijβs
ij = |Cj

i |
|Cj−1

i |
· |Cj

i |∑n
i=1|Cj

i |
(10)

According to formula (10), ds
ij ∈ [0, 1]. The larger the ds

ij , the greater the likelihood that class Ci

will be the classification label in child node Rj . When ds
ij = 1, it means that all samples of class Ci

from the parent node are distributed in child node Rj , and all samples in child node Rj belong to
class Ci.

Let the CKD factor of the positive samples p1 in child node R1 be:

ds
p1R1 = αs

p1R1βs
p1R1 = p1

2

(p1 + n1)(p1 + p2) (11)

Similarly, the CKD factor of the negative samples (n1) in child node R1, and the CKD factor of
the positive (p2) and negative samples (n2) in child node R2 are as follows:

ds
n1R1 = αs

n1R1βs
n1R1 = n1

2

(p1 + n1)(n1 + n2) (12)

ds
p2R2 = αs

p2R2βs
p2R2 = p2

2

(p2 + n2)(p1 + p2) (13)

ds
n2R2 = αs

n2R2βs
n2R2 = n2

2

(p2 + n2)(n1 + n2) (14)

3.2 CKD factor oriented to split processes of non leaf node

Figure 1 illustrates the conceptual framework for constructing a novel split index, based on the
CKD factor. This process necessitates the fusion of the CKD factor indexes of child nodes during
the split to achieve fair expression of node class features. Two requirements must be fulfilled: First,
in deriving the difference in the CKD factor within a node, it is necessary to maximize CKD factor
difference between classes, aiming to emphasizing the main class feature within the node; Second,
in deriving the difference of inter-node CKD factor, it is necessary to make the split left and right
nodes tend to express different class features, achieving better classifying samples through once node
division. Based on these two processes, the relevant Definition 7 (to meet the first requirement) and
Definition 8 (to meet the second requirement) are proposed.

Definition 7. Intra-node CKD Factor Difference ds
Rj
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Used to quantitatively measure the difference in CKD factor within a child node, to identify the
main class features of the child node, as shown in formula (15). ds

Rj
∈ [−1, 1], and the larger the

absolute value of ds
Rj

, the greater the difference in CKD factor between the two class samples within
the node.

ds
Rj

= ds
piRj

− ds
niRj

(15)

Ls
Rj

=

P, if ds
Rj

≥ 0
N, if ds

Rj
< 0

(16)

The non-leaf node class feature identification pattern Ls
Rj

is a qualitative expression of the intra-
node CKD factor difference, as shown in formula (16). If ds

Rj
≥ 0, the main class feature of the node is

the class P ; if ds
Rj

< 0, the main class feature of the node is the class N . Therefore, when determining
the class of non-leaf nodes based on the intra-node CKD factor difference during the splitting process,
the class with the greater ds

Rj
is selected as the class feature Ls

Rj
of the non-leaf node.

Figure 1: The construction framework for the split difference index

Definition 8. Inter-node CKD Factor Difference ds
(Rj ,R(j+1))

Used to determine the class feature difference between child nodes Rj and Rj+1, as shown in
formula (17).

ds
(Rj ,Rj+1) =

0, if Ls
Rj

= Ls
Rj+1

1, if Ls
Rj

̸= Ls
Rj+1

(17)

The inter-node CKD factor difference ds
(Rj ,Rj+1) is a Boolean judgment formula, ds

(Rj ,R(j+1)) ∈
{0, 1}. If ds

(Rj ,Rj+1) = 0, it indicates that the class features of the child nodes are the same; if
ds

(Rj ,Rj+1) = 1, it indicates that the class features of the two child nodes are different. To ensure that
the class features of the child nodes generated during the node splitting process are as distinct as
possible, the inter-node CKD factor difference tends to be 0.

Referring to Figure 1, through the two-step derivation of the intra-node and inter-node CKD
differences in the non-leaf node class feature expression strategy, the qualitative expression of the
class features of the child nodes is achieved. To quantitatively measure the expression of class features
of the child nodes, the ds

Rj
and ds

(Rj ,Rj+1) are combined to construct a new split index of DT non-leaf
nodes, i.e., the split difference index, to achieve fair classification of minority class in the process of
classifying imbalanced samples.

Definition 9. Split Difference γs
(Rj ,Rj+1)
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The index is used to comprehensively evaluate the CKD factor difference within and between
child nodes during the node splitting process. The calculation formulas are shown in (18) and (19).
γs

(Rj ,Rj+1) ∈ [0, 1]. The larger the value of γs
(Rj ,Rj+1), the more distinct the representation of different

classes in the left and right nodes.

γs
(Rj ,Rj+1) = 1

2 |ds
Rj

− ds
Rj+1 | (18)

γs
(Rj ,Rj+1) = 1

2 |ds
piRj

+ ds
ni+1Rj+1 − ds

niRj
− ds

pi+1Rj+1 | (19)

Extreme value analysis of split diversity γs
(Rj ,Rj+1):

1. If γs
(Rj ,Rj+1) = 1, it indicates that the main class features of the child nodes are pure class P and

pure class N , which is an optimal node splitting situation;

2. If γs
(Rj ,Rj+1) = 0, it indicates that the main class features of the child nodes are both class P or

class N , and ds
Rj

= ds
Rj+1

, which is a poor situation.

In the formula (19), ds
piRj

, ds
ni+1Rj+1

, ds
niRj

, and ds
pi+1Rj+1

respectively represent the "distribution
probability" after eliminating the sample difference between minority class and majority class within
the child nodes. This criterion integrates two measurements:

1. By calculating the proportion of category samples in the child nodes inherited from the parent
node category samples, it can eliminate the influence of the overall sample probability of that
category on the probability of categories inherited by the child nodes;

2. By calculating the proportion of category samples in the child nodes from the sample proportion
in this node, it conducts a majority vote.

ds
piRj

− ds
niRj

and ds
ni+1Rj+1

− ds
pi+1Rj+1

reflect the class differences of the same node, while ds
piRj

−
ds

niRj
− (ds

niRj
− ds

pi+1Rj+1
) reflects the class differences between nodes. The absolute value is taken

to ignore the order of difference making, so that γs
(Rj ,Rj+1) can treat two child nodes and two classes

more fairly.
Hence, a DT node split index that eliminates the interference of large and small class sample distri-

bution differences while fully distinguishing the differences in child node classes has been constructed.
By combining the leaf node class feature pattern recognition method based on CKD factor for

imbalanced classification in Section 3.1 with the split difference index proposed in this section, a DT
node split algorithm based on split difference is constructed. This algorithm divides the construction
of imbalanced classification DT into two parts: the determination of class labels for leaf nodes and
the determination of splitting points for non-leaf nodes. The specific algorithm steps are as follows.

According to formula (3), Gini(D0, Ai = a) = 2
p+n

(
p1n1

p1+n1
+ p2n2

p2+n2

)
. After calculating p1, n1, p2,

and n2 at step 7 of Algorithm 1, the computational complexity of p + n = p1 + n1 + p2 + n2 is O(1),
the computational complexity of p1n1

p1+n1
and p2n2

p2+n2
are O(1), therefore, the computational complexity

of the Gini index is still O(1).
The logic of Algorithm 1 is similar to that of traditional DT. However, instead of using traditional

indices like the Gini index for node splitting, it replaces them with γ. According to formula (19),
γs

(Rj ,Rj+1) = 1
2

∣∣∣ p2
1

(p1+n1)(p1+p2) + n2
2

(p2+n2)(n1+n2) − n2
1

(p1+n1)(n1+n2) − p2
2

(p2+n2)(p1+p2)

∣∣∣, the basic operations
are still performed by p1, n1, p2, and n2, and the computational complexity of the algorithm is still
O(1), which is the same as that of the CART algorithm.

The splitting criterion for Algorithm 1 is the splitting difference, γs
(Rj ,Rj+1). Using ds

p1R1
as an

example, γs
(Rj ,Rj+1) eliminates the disadvantage of a small class proportion p1 in p + n by measuring

the inheritance ratio p1/(p1 + p2) from the parent node category sample. This ensures that γs
(Rj ,Rj+1)

fairly evaluates both minority and majority classes when assessing child node splits. Unlike the Gini
index, which emphasizes purity measurement, Algorithm 1 focuses more on expressing differences
between classes among split child nodes and within child nodes themselves. It tends to make child
nodes exhibit two different classes, thereby enabling faster and more accurate identification of minority
class samples.
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Algorithm 1 SDDT: Split Difference Decision Tree
Require: Dtrain, Dtest
Ensure: DT , tree

1: Initialize the root node R(j=0), Sample space Dj = Dtrain, p(j=0), n(j=0);
2: Initialize the best split parameters of Rj : vj = (γbest, A, a, Dl

best, Dr
best) = (0, 0, 0, 0, 0);

3: if Rj satisfies the DT stop condition then
4: Identify the class feature Lj of Rj using Formula (4);
5: else
6: for i ∈ I, k ∈ K do
7: Obtain Dl

ik, Dr
ik, pl

ik, nl
ik, pr

ik, and nr
ik by splitting Dj when Ai = ak

i ;
8: Calculate dpl

ik, dnl

ik , dpr

ik , and dnr

ik using Formulas (11), (12), (13), (14);
9: Calculate γ(Dl

ik, Dr
ik) using Formula (18);

10: if γ(Dl
ik, Dr

ik) > γbest then
11: vj(γbest, A, a, Dl

best, Dr
best) = (γ(Dl

ik, Dr
ik), Ai, ak

i , Dl
ik, Dr

ik);
12: end if
13: end for
14: Dj = Dl

best; repeat steps 2-14, traverse down the DT child nodes;
15: Dj = Dr

best; repeat steps 2-15, traverse down the DT child nodes;
16: end if
17: Generate the DT , tree.

3.3 Weighted Split Difference Classification and Regression Tree

The classic DT split indexes evaluate the node splitting process based on the distribution proba-
bility of class samples of child nodes. Such evaluation philosophy ensures the concentrated expression
of the probability of the majority class in the child nodes, such that the smaller the Gini index, the
higher the purity of the child node samples. However, for imbalanced data, minority class samples
cannot be equally recognized due to their naturally low sample size.

The proposal of the split difference index γ can well compensate for the shortcomings of classical
split indexes in expressing features of minority class. Therefore, integrating Gini index and γ index
during the node splitting process to generate a weighted split index can better ensure the ideal degree
of node splitting, i.e., both ensuring the purity of the child node samples and solving the feature
expression of minority class samples.

Generating a weighted split index through the setting of a global weight parameter is an exploratory
process. To obtain the best classification results, different weights need to be adapted for variable
sample sizes, feature sizes, and levels of sample imbalance. We know that the smaller the Gini index,
the higher the sample purity and the greater the split difference, the greater the class difference of the
child nodes. Therefore, the weights ω and 1 − ω are set to adjust the decision-making degree of the
Gini index and the γ index during the node splitting, ω ∈ [0, 1].

Assuming ω = 0, SG solely relies on the Gini index, indicating that node splitting only concerns
purity measurement. As ω gradually increases from 0, node splitting begins to consider the impact
of split diversity gradually. And when ω < 0.5, the Gini index exerts a stronger influence on SG
compared to γ. Conversely, when ω > 0.5, the influence of γ on SG becomes greater than that of the
Gini index, directing node splitting to focus more on split difference, while the emphasis on purity
measurement weakens. When ω = 1, SG relies entirely on γ, and node splitting exclusively considers
split difference. However, the optimal split’s concern for purity and split difference varies with variable
sample distributions. Therefore, ω needs to be a global variable. By traversing all possible ranges
of ω to obtain the optimal SG value, the best node splitting is achieved through a comprehensive
consideration of both purity and split difference. Therefore, the calculation process of the weighted
split difference and Gini index (SG) is shown in Formula (20).

SG(Nj , Dj , Ai = ak
i , ω) = ω · γ + (1 − ω) · (1 − Gini) (20)

In formula (20), Gini ∈ [0, 1], γ ∈ [0, 1], therefore SG ∈ [0, 1]. Theoretically, the larger SG is when
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Gini is smaller and γ is larger. Meanwhile, the higher the internal sample purity of the two nodes
after the split, the greater the intra-node class difference, the greater the inter-node class difference,
and the better the node split results. Therefore, it is considered that when the weighted sum of γ
and Gini index takes the maximum value max(SG), the corresponding weight is the optimal weight
ωbest. Select the best split parameter setting SG(Nj , Ai = ak

i , ωbest) to split child nodes, and traverse
downwards to generate the entire DT. The CART classification algorithm weighted by split difference
is presented as follows.

Algorithm 2 WSD_CART: Weighted Split Difference Classification and Regression Tree
Require: Dtrain, Dtest, weight parameter ω ∈ [0, 1]
Ensure: Evaωbest

test = (F ωbest
test , AUCωbest

test , PREωbest
test , RECωbest

test , ACCωbest
test ), treebest, ωbest

1: Initialize the root node Rj=0, Sample space Dj = Dtrain, pj=0, nj=0, ωbest = 0, treebest = null;
2: for ω ∈ [0, 1] do
3: Initialize the best split parameters of Rj , vj : (γbest, A, a, Dl

best, Dr
best) = (0, 0, 0, 0, 0);

4: Initialize Evaωbest
test = (0, 0, 0, 0, 0), SGbest = 0;

5: if Rj satisfies the DT stop condition then
6: Identify the class feature Lj of Rj using Formula (4);
7: else
8: for i ∈ I, k ∈ K do
9: Obtain Dl

ik, Dr
ik, pl

ik, nl
ik, pr

ik, nr
ik by splitting Dj when Ai = ak

i ;
10: Calculate γ(Dl

ik, Dr
ik) using Formula (18);

11: Calculate SG(Nj , Dj , Ai = ak
i , ω) using Formula (20);

12: if SG(Nj , Dj , Ai = ak
i , ω) > SGbest then;

13: vj(SG, A, a, Dl, Dr) = (SG(Nj , Dj , Ai = ak
i , ω), Ai, ak

i , Dl
ik, Dr

ik);
14: ωbest = ω;
15: end if
16: end for
17: Dj = Dlbest

ik ; repeat steps 3-16, traverse down the DT child nodes;
18: Dj = Drbest

ik ; repeat steps 3-17, traverse down the DT child nodes;
19: end if
20: Generate the DT under ωbest, treebest;
21: Calculate Evaωbest

test = (F ω
test, AUCω

test, PREω
test, RECω

test, ACCω
test);

22: end for
23: Output Evaωbest

test under ωbest, treebest;

The inner computational logic of Algorithm 2 is similar to that of traditional DT. Instead of
using traditional criteria like the Gini index for node splitting, it replaces them with SG, so the inner
computational complexity of Algorithm 2 is the same as that of the CART algorithm. Additionally,
an outer loop is added to traverse weight parameters ω. By traversing the parameter space, multiple
corresponding DTs can be generated. The classification results of these DTs are compared, and the
tree with the optimal evaluation is selected as the output of the algorithm. The corresponding value
of ω represents the optimal weight ratio of the Gini index and γ. The SG index, which combines the
advantages of both evaluation indexes, achieves better classification performance than its components.
However, the computational complexity of this algorithm is linearly related to the size of the ω
parameter space, meaning that the number of candidate DTs generated corresponds to the number of
parameter space traversals. Ultimately, one optimal result is selected. Therefore, Algorithm 2 has a
higher computational complexity compared to traditional DTs.

4 Experimental result

4.1 Dataset and experimental design

The binary classification experiment was conducted using the UCI dataset and the space product
material dataset (SPM). These UCI datasets with varying levels of imbalance are usually difficult to
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accurately classify by traditional DT algorithms. Therefore, these datasets with different sample size
and attribute size were selected to validate the effectiveness of proposed algorithms in imbalanced
classification. Additionally, to execute the CART algorithm, attributes of the selected dataset are
all numerical. Table 3 describes the basic characteristics of the experimental datasets at different
imbalanced levels, including sample size, positive/negative sample ratio, and number of attributes.

The SPM dataset comprises space product materials obtained from the logistics center of the
China Academy of Launch Vehicle Technology. It contains a total of 921 samples, with a positive and
negative sample ratio (Sample distribution) of 1:3.77 for generic and non-generic material categories.
The SPM dataset is utilized for the subsequent application of classification of space product materials.
Additionally, the YS dataset selected "NUC" as positive samples and "ME2" class as negative samples.
Furthermore, after removing missing values, 829 data points remained in the MM dataset.

Table 3: Information for the dataset
Dataset Source Abbreviation Data size Sample distribution Attributes
Yeast UCI YS 480 1:8.4 9

Customer Churn UCI CC 3150 1:5.36 13
SPM Survey SPM 921 1:3.77 10

Breastw UCI BW 683 1:1.86 9
Mammographic Mass UCI MM 829 1:1.07 6

Raisin UCI RS 900 1:1 7

Four DT split indexes were selected for experimental results comparison. The details of these split
indexes are presented in Table 4. The term "Split tendency" represents the tendency of the optimal
value of different split indexes. The split index Gini + dij is a compared index proposed by Lv et al.
[19], while γ and SG are new split indexes proposed in Section 3.2 and Section 3.3, respectively. For
the weight parameters setting of SG, ω ∈ [0, 1] and the step length is 0.1. A value of 0.1 was selected
to observe the trend of the impact of the two indexes on classification performance in the WSD-CART
algorithm. (If better classification results are desired, the parameter traversal step length can be set
to be smaller, such as 0.01.) By traversing the weight parameters, the optimal evaluation result of SG
will be determined, which is then used for comparison with those of other indexes.

Table 4: Split index for each DT algorithm
Split index Gini Gini+dij γ SG
Algorithm CART KF_CART SDDT WSD_CART

Actor Compared Compared Proposed Proposed
Split tendency MIN MIN MAX MAX

The experiment employs the average of ten-fold cross validation results as the algorithm outcome,
and assesses the classification proficiency of γ and SG listed in Table 4 using five extensively utilized
classic classification evaluation metrics: F-score, AUC, REC (recall), PRE (precision), and ACC
(accuracy) [24]. This study conducts two sets of experiments: (1) to validate the performance of the
proposed DT algorithms, namely SDDT, using UCI datasets, and further demonstrate the superiority
of the WSD-CART algorithm; (2) to address the accurate identification challenge of generic materials
in the space product material classification domain, the WSD-CART algorithm is applied to the SPM
dataset to obtain pertinent decision support.

4.2 Results Analysis

Figure 2 illustrates the classification performance evaluation of various split indexes across different
datasets with varying levels of imbalance. The horizontal axis scale represents the Gini index, while
the remaining 11 scales depict the traversal of different ω values for the SG index. Specifically, when
ω = 0 and ω = 1, the SG index precisely corresponds to Gini+dij and γ, respectively.

It is evident that, with the exception of the REC line in Figure 2(e), the performance evaluation
of each dataset exhibits an overall upward trend as the ω of γ increases. This indicates that, rel-
ative to the compared algorithms, the SDDT algorithm and WSD-CART algorithm possess strong
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Figure 2: Comparison of classification performance of algorithms on UCI dataset

classification capabilities on both balanced and imbalanced data. Furthermore, the WSD-CART algo-
rithm demonstrates robust stability and robustness across different datasets, consistently maintaining
its classification performance over multiple runs and exhibiting high classification capabilities when
handling various levels of dataset imbalance.

To obtain the optimal weight parameters of the SG index for the classification of each dataset in
Figure 2, we identify a set of optimal classification evaluations as the final outcomes of the SG index
by jointly screening for the maximum values of F and AUC. The weight corresponding to this set of
evaluations is deemed the optimal weight ωbest, reflecting the most favorable impact ratio of the Gini
index and γ on the optimal classification of the dataset. For instance, the optimal evaluation result
for YS is determined by the SG index within a weight interval [0.8,1], where the values of F, AUC,
PRE, REC, and ACC all attain their peak. Since the DT structures for the SG index division on
the weight interval [0.8,1] are consistent, all resulting evaluations are identical and can be considered
optimal. Analogously, distinct optimal evaluation weights are identified for various datasets: 0.4 for
CC, a range of [0.3,1] for BW, [0.5,0.8] for MM, and 0.9 for RS. Each of these weights underscores the
dataset-specific optimization achieved through the SG index framework. Overall, compared to a single
value, the weight interval reflects that the SG index is more applicable and stable on these datasets.

These SG evaluation results are contrasted and summarized with the classification evaluation
results of the other three indexes in Table 5. For each dataset, the best evaluation results are denoted
in bold, and the second-best evaluation results are underlined.

From Table 5, it is discernible that the WSD_CART algorithm, which employs the SG index,
exhibits a significantly superior classification effect compared to other algorithms. The γ index of the
SDDT algorithm shows the best evaluation on the YS and BW datasets and a second-best evaluation
on the MM and RS datasets. The PRE values of Gini+dij for the datasets are not greater than
those of the Gini index, while the REC values of Gini+dij are not less than those of the Gini index.
This indicates that the CKD factor index (dij) has enhanced the correct prediction ability of the
"class 1" samples as the minority class in the leaf nodes when dealing with imbalanced classification,
but it cannot avert the possibility of negative samples being misjudged as positive. In comparison
to Gini+dij , the overall classification evaluation of γ is favorable, but the PRE and ACC values in
CC and the REC value in RS are slightly lower than those of Gini+dij . This is attributable to the
differing construction goals between γ and the Gini index. However, the classification evaluation of
SG, obtained by fusing the characteristics of γ with the Gini index, surpasses those of its constituent
indexes.
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The ωbest column in Table 5 represents the optimal weights for the SG index derived from the
classification traversal on each dataset, with the optimal weights for CC and RS being 0.4 and 0.9,
respectively, that reflects the contribution of γ to the SG index. The optimal weight setting for
datasets YS, BW, and MM demonstrate the more prominent applicability of the split difference γ in
the SG index on these datasets.

Table 5: Comparison of final classification results evaluation of algorithms (%)
Dataset Split index F AUC PRE REC ACC ωbest

YS Gini 64.84 81.40 67.89 66.96 92.71 0.8-1
Gini+dij 67.02 84.14 66.39 73.63 92.29

γ 71.74 86.91 69.61 77.98 93.75
SG 71.74 86.91 69.61 77.98 93.75

CC Gini 73.35 82.50 81.19 68.00 92.38 0.4
Gini+dij 74.85 84.00 79.50 71.40 92.54

γ 75.00 84.08 78.71 72.23 92.48
SG 75.62 84.09 81.20 72.26 92.83

BW Gini 93.52 95.34 91.92 95.39 95.31 0.3-1
Gini+dij 93.52 95.34 91.92 95.39 95.31

γ 93.69 95.36 92.62 94.97 95.46
SG 93.69 95.36 92.62 94.97 95.46

MM Gini 79.75 81.22 84.06 76.43 81.42 0.5-0.8
Gini+dij 80.23 81.47 83.72 77.62 81.66

γ 82.81 83.56 84.13 82.03 83.71
SG 82.87 83.65 84.38 81.76 83.83

RS Gini 84.42 85.02 86.18 83.15 84.89 0.9
Gini+dij 84.42 85.02 86.18 83.15 84.89

γ 84.85 85.53 88.09 82.29 85.44
SG 85.72 86.29 88.33 83.57 86.22

Overall, the SDDT algorithm has a better classification effect than the classic CART algorithm,
and the WSD-CART algorithm has a greater advantage over the SDDT algorithm in improving the
accuracy of classification for imbalanced data. SDDT and WSD-CART algorithms also suffer from
a common issue in DT algorithms: samples in difficult-to-classify regions can affect the classification
performance, as internal and external differences of nodes cannot be easily distinguished. This is
reflected in the evaluation of the REC value in the RS dataset and BW dataset. Such limitation will
be further studied in our future work.

4.3 Application for space product material classification

Facing high-intensity and normalized concurrent development tasks involving multiple space prod-
ucts, the stable supply of manufacturing materials for space products poses challenges. Generic ma-
terials, essential for production across multiple space products with frequent demand, constitute half
of the total material supply. Their availability significantly affects the smooth progress of production.
Therefore, accurately identifying generic materials from all material is crucial for ensuring the success
of development tasks [25].

This study selected SPM dataset to conduct space product material classification experiments and
provided corresponding decision support for inventory management of space product materials. The
dataset covers the inventory data of the entire process from ordering to delivery of space product
materials from 2015-01-01 to 2018-05-01, totaling 310000 items.

According to the definition of the generic materials, attribute meanings, and missing values, data
preprocessing is carried out, including data cleaning, classification key attribute statistics, feature
selection, and data transformation [26]. A total of 15 classification related attributes are preliminarily
obtained; Further calculate the correlation coefficient between attributes and classification categories,
and select 10 attributes with correlation coefficients greater than 0 as the classification attribute set, as
shown in Table 6. Specifically, the actual values of material types are steel rods, aluminum rods, steel
plates, etc., and have been numerically processed. Finally, after data preprocessing, 921 classification
sample data were formed with the material ID as the primary key, with a positive/ negative sample
ratio of 1:3.77, which is an imbalanced sample.
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Table 6: Classification attribute set of space product materials
Material ID Attribute Correlation coefficient Example Type

A1 Material Type 0.53 7 Numerical
A2 Kinds of engineering used 0.47 2 Numerical
A3 Total Outbound frequency 0.38 1 Numerical
A4 Average of order lead time 0.27 71 Numerical
A5 Total order times 0.15 3 Numerical
A6 Variance of monthly Outbound frequency 0.12 1.88 Numerical
A7 Variance of order lead time 0.11 25 Numerical
A8 Average of inventory 0.014 1224 Numerical
A9 Total outbound quantity 0.012 345 Numerical
A10 Total amount of outbound 0.0064 28080.3 Numerical

Four types of node split indexes were used to classify material, and the results were evaluated as
shown in Table 7. The optimal weight range of the SG index was [0.7, 0.9], and its classification results
showed the best performance, with a significant improvement in overall classification performance
compared to the Gini index and Gini+dij .

Table 7: Evaluation of classification results for space product materials
Split index F AUC PRE REC ACC ωbest

Gini 67.30 79.27 66.58 68.90 86.54 0.7-0.9
Gini+dij 69.12 81.25 67.56 71.67 86.65

γ 72.22 82.94 70.73 74.02 88.05
SG 73.47 84.19 70.88 76.66 88.49

SG’s improvement to Gini 9.17 6.21 6.46 11.26 2.25

Classify the material samples and obtain the confusion matrix results under four indexes: Gini
index, Gini+dij , γ, and SG, as well as the prediction accuracy of categories as shown in (a), (b), (c),
and (d) of Figure 3, respectively. There are a total of 193 positive samples actually, and the SG index
predicts 19 more true positive samples compared to the Gini index. It can be clearly seen that the
true positive rate (TP) of SG has improved from 66.32% to 76.17%. Such an improvement of close to
10% is very significant for predicting the minority class. At the same time, the SG index also reflects
predictive ability for TN and FP that is not weaker than the Gini coefficient, making it more likely
to accurately predict the generic material as the majority class of space product materials.

Figure 3: Confusion matrices comparison for space product material classification

Based on the SG index and with weights of [0.7, 0.9], a classification decision tree (DT) is con-
structed for material data to generate corresponding space product material classification rules, as
shown in Figure 4. Among them, there are 8 rules for determining the types of generic materials. By
dividing the positive and negative samples on the root node, it can be seen that material type has the
greatest impact on splitting the material classes. Under such one-step division, 86.40% of non-generic
material samples are divided into the left node, and 81.87% of generic material samples are divided
into the right node. The other important factors are ranked in order of the kinds of engineering used,
total order times, average of order lead time, total outbound quantity, and other attributes.

Due to the limited accumulation time for some material sample data and the human experience
noise across the dataset, there are still numerous misclassified samples overall. Addressing this issue
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Figure 4: Classification rules of space product material

necessitates standardizing the procurement process, implementing rigorous data entry procedures in
subsequent management, or incorporating additional distinctive attributes from a technical perspective
for data mining.

By applying the WSD_CART algorithm to accurately classify materials, significant differences
between non-generic and generic materials can be clearly identified. Non-generic materials are diverse
and primarily targeted at a few exclusive products, with relatively low frequency of use. Therefore,
we recommend continuing to use the traditional small-batch, multi-batch ordering method to ensure
timely and flexible availability of such materials to meet specific needs [27].

For the mainstream branches of generic materials, their characteristics are more distinct: stable
quality and performance (A1 > 5), targeting multiple models (A2 > 5), controllable delivery cycles
(83 < A4 ≤ 425.5), and high frequency of use (A9 > 183.3). These traits align with the industry’s
definition of generic materials and offer opportunities for enterprises to optimize their ordering strate-
gies. We strongly recommend adopting a more efficient and customized combination batch ordering
strategy to replace the traditional cumbersome ordering method for such materials [28]. By integrat-
ing demand and optimizing procurement plans, enterprises can reduce procurement costs and improve
overall supply chain efficiency [29].

Furthermore, it’s important to note that general materials commonly experience extended lead
times in their ordering process due to high and frequent demand, necessitating longer preparation
times for suppliers. To address this issue effectively, we suggest that enterprises establish closer
partnerships with suppliers. By collaboratively enhancing the ordering process, they can efficiently
reduce lead times and ensure timely supply of general materials [30].

5 Conclusions
This study introduces a novel approach to addressing imbalanced classification in DTs through

the development of the split difference index. Our proposed algorithms, SDDT and WSD-CART,
demonstrate significant improvements in majority class recognition while maintaining high overall
classification accuracy across various datasets.

The experiments on UCI datasets with different levels of imbalance validate the robustness of
our approach. Notably, in the space product material classification task, our method increased the
true positive rate for majority class identification from 66.32% to 76.17%, showcasing its practical
applicability in real-world scenarios.

The strength of our approach lies in its ability to provide both improved classification performance
and interpretable decision rules. This dual advantage makes it particularly valuable for domains where
understanding the decision-making process is as crucial as the accuracy of the classification itself.

However, it’s important to acknowledge the limitations of this study. The computational complex-
ity of our algorithms, especially for large datasets, needs further investigation. Additionally, while our
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method shows improvements across various imbalance levels, its performance in difficult classification
areas within some data samples requires more extensive testing.

Future research directions include integrating this approach with ensemble methods to potentially
further enhance performance. Exploring the applicability of the split difference concept to other
machine learning paradigms beyond DTs could also yield interesting insights.

In conclusion, this work contributes to the ongoing efforts to address the challenges of imbalanced
data in machine learning. By offering a new perspective on DT split criteria, we hope to inspire further
innovations in this critical area of research, ultimately leading to more robust and fair classification
systems across diverse applications.
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