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Abstract

In this paper, an RST switching bi-controller, based on flatness and on Luenberger observers, is
designed to control the opening angle change of an Electronic Throttle Valve (ETV), to compensate
unexpected external disturbances and to detect sensor faults. Two identified mathematical linear
models are established to simulate the ETV for two different positions of the throttle plate. The
use of robust RST switching bi-controller based-flatness approach by the development of closed-
loop control is proposed, in order to obtain a stable system tracking a desired flat trajectory. The
switching between the two models using stateflow tool is based on residual values generated by
using the Luenberger observers in order to detect and to localize sensor faults occurrence. The
observer’s gains are determined using Linear Matrix Inequalities (LMIs) taking into account the
stability of the system based on Lyapunov theory. The simulation results show the efficiency of
the developed robust switching RST bi-controller based-flatness in terms of tracking the desired
angle’s reference trajectory, rejecting disturbances and detecting sensor faults.
Keywords: Electronic throttle valve, RST switching bi-controller, flatness, Luenberger observers,
LMIs, sensor fault detection.

1 Introduction
It’s worth mentioning that the majority of automotive engines are using the ETV in order to

control the airflow rate of the internal combustion by regulating the throttle plate position, [1, 26,
30, 32, 35, 37, 38]. The throttle valve is composed by a throttle plate and a motor which forces the
plate to rotate to a defined angle and then to return to its original position, due to the presence
of a spring. The throttle plate is responsible for regulating the amount of air that flows into the
engine. Its primary purpose is to modify the air-fuel mixture by altering the valve plate’s opening
angle, which controls the airflow into the engine during combustion. The control of the throttle plate,
specifically its angular position, has a direct impact on the efficiency and on emissions of the engine.
The throttle plate’s angular position has to follow a desired trajectory, as determined by an accelerator
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pedal, to correspond to the current engine load. It results in enhancements in vehicle drivability, fuel
efficiency and safety [1, 26, 32, 35, 37, 38]. Several control strategies have been proposed in the
literature for complex dynamic systems [8] and especially to control the electronic throttle, including
the Proportional-Integral-Derivative (PID) controller and a feedback compensator for friction and
limp-home effects as discussed in [12]. A similar study, presented in [14], tackled an experimental
benchmark of robust control of throttle valve positions. Moreover, a sliding mode controller, based
on observer in discrete-time framework, were designed in order to obtain a robust tracking control
of the valve system in [4, 13]. Furthermore, in [41] is introduced an Adaptive Inverse Model Control
System (AIMCS) for the ETV, which employs two radial basis function neural networks. Differential
flatness [16, 18, 19, 20] was previously used for trajectory planning and tracking control [2, 17],
with controller-based flatness designed specifically for the ETV. In [42], an adaptive backstepping
sliding mode control based on the Radial Basis Function Neural Network (RBFNN) was proposed
for vehicle’s wheel slip tracking. Referring to [24, 35], the diagnosis of gasoline injection engines
and fault tolerant control based on fuzzy logic control were studied. In reference [5], an engine’s
ETV position estimation was achieved through the use of a neural network-based virtual sensor.
Meanwhile, [38] aimed to enhance the performance of the electronic throttle control through hybrid
theory-based time-optimal control. For more details about ETVs, a comprehensive description of
later trends in the design and verification/validation of ETV-based modern systems can be found
in [1]. Otherwise, a great part of the research community was tackled the control issues linked to
ETVs. In [7, 11, 15, 22, 27, 28, 29, 31, 34], multi-model approaches for complex systems modeling
based on unconventional strategies such as genetic algorithms and fuzzy control are proposed. In
this context and in order to present advanced ETV control approaches, the work depicted in [25]
studied the impact of nonlinearities in the ETV system and its parameters through the heuristic
genetic algorithm based on flatness control. A Takagi-Sugeno fuzzy control strategy for automotive
ETVs under the presence of unknown inputs was elaborated in [24]. Barrier Lyapunov function-based
adaptive backstepping control for Electronic Throttle Control Systems (ETCS) is designed to track the
desired throttle angle [39]. A similar work, presented in [33], proposed an asymmetric modeling and
control for ETVs. Chaos control and stability analysis of an ETV dynamical system were introduced
in [10]. More interest should be dedicated to propose suitable control methods for such widespread
systems in terms of tracking desired trajectory in presence of faults. Certainly, tackling only the
design/implementation, verification/validation, controllability or the energy efficiency issues is not
sufficient for ETVs. Even within an optimal control scheme [38], an appropriate operation of ETVs is
not possible under fault occurrences. Such an issue has not been sufficiently studied in the literature
[35, 36]. More interest should be dedicated to suggest specific diagnosis methods for such systems.

In this paper, a robust RST switching bi-controller, based on flatness and on Luenberger observers,
of the ETV is put forward. The flatness property is proposed to define a desired output reference
trajectory starting from a flat output system. The use of this property concerns the elaboration of the
control in a closed loop, in order to obtain a stable system tracking a desired trajectory in a discrete-
time formalism. A set of Luenberger observers is designed to estimate the system states in order to
generate residual values. A switching strategy using stateflow based on residual values evaluation,
that allows the selection of the appropriate RST based flatness controller in presence of sensor fault,
is proposed. LMIs approaches are employed in order to ensure ETV system stability.
This paper is organized as follows. In section II, the design of the proposed RST bi-controller and the
switching approach between the two ETV models, based on residual value, are provided. In section
III, a robust RST bi-controller based on flatness and on Luenberger observers considering the sensor
fault detection occurrence is put forward. The application of the RST switching bi-controller based
flatness to the ETV and corresponding simulation results, emphasizing the efficiency of the proposed
approach are presented in Section VI.
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2 Proposed ETV RST bi-controller

2.1 Basic idea

In previous works [16, 17, 18, 19, 20, 21], it has been shown that flatness control provides higher
performance than conventional control systems in term of tracking of the desired reference trajectory
starting from a flat output system.
Furthermore, as advantage of the proposed approach of control, the addition of Luenberger observers,
for ETV’s parameters estimation, makes the control system more robust. Also, Luenberger observers
are designed to detect and to localize sensor fault based on residual values comparison.

The performances obtained by switching, in terms of tracking of the desired angle’s trajectory
and sensor faults rejection, are proposed in this paper. Besides, this novel control approach applied
for ETV system takes into account the stability analysis of a switching control strategy based on
Lyapunov function.

Moreover, as another significant advantage, the proposed RST based-flatness bi-controller ensures
the maintain of nominal performances as well as the noise suppression and the attenuation of the
input/output disturbances in high frequencies.
However, the objective of the present work is to design a robust RST bi-controller structure for an
ETV, described by two operating models. The switching between the two models is based actually on
comparing the residues between the model estimated output calculated using a Luenberger observer
and the real one of the system.
Two RST flatness-based controllers C1 and C2 are designed specifically for two given models H1 and
H2 of the ETV process as mentioned in reference [17, 40]. The stateflow tool in MATLAB/Simulink is
proposed to select between the control signal u1(k) or u2(k), which corresponds to the smallest residue.
Referring to [7, 11, 28, 29, 34], switching control approaches are suggested for complex systems based
on multi-model formalism. To determine the appropriate controller and timing for switching between
controllers, a switching approach control is presented below.
1) Flatness-based RST bi-controllers C1 and C2 are designed, respectively, for operating models H1
and H2, for j ∈ {1, 2}, for which the transfer functions of the open-loop discrete-time process are in
the form

Hj(q−1) = Bj(q−1)
Aj(q−1) (1)

with
Aj(q−1) = 1 + aj,n−1q−1 + . . . + aj,1q−n+1 + aj,0q−n (2)

Bj(q−1) = bj,n−1q−1 + . . . + bj,1q−n+1 + bj,0q−n (3)
aj,i and bj,i constant parameters, i = 0, 1, ..., n − 1 and q−1 the causal operator.
The proposed RST flatness-based control approach is firstly developed in a discrete-time framework
in order to track a reference trajectory starting from flat outputs system zj(k). Then, the planning of
the desired flat trajectories zd

j (k) for flat output system variables zj(k) is established.
2) The choice of the polynomial K(q), the denominator of the tracking dynamic, is performed such that
closed-loop poles should be well optimized in order to satisfy the desired performances of the proposed
ETV RST based-flatness bi-controller. Indeed, the design of the proposed controller is guided by the
choice of the tracking polynomial K(q).
Let’s consider d(t) and f(t), respectively, the unexpected disturbance and the sensor fault.
3) For the models H1 and H2, corresponding Luenberger observers L1 and L2 are introduced, as shown
in Figure 1.
4) Residual value r1(k) (respectively r2(k)) is generated for the operating models H1 (respectively
H2). They will be used to detect the sensor fault.

r1(k) = y(k) − ŷ1(k) (4)

r2(k) = y(k) − ŷ2(k) (5)
ŷ1(k) and ŷ2(k) are the estimated outputs, respectively, of operating models H1 and H2. While, the
residual values rj(k) represent the difference between the real system output y(k) and the estimated
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outputs ŷj(k) for each model.
5) The controller selection is based on residues using a stateflow modelling tool described in paragraph
(2.2), where the selected RST based-flatness controller C1 or C2 corresponds to the argument with
the smallest residual value using a transition method, [18, 19, 20, 21].
6) The residue value index determines the appropriate desired flat trajectory zd

1(k) or zd
2(k), corre-

sponding to the active operator mode H1 or H2.
7) The control signal uj(k), generated by the selected active controller C1 or C2, is used to control
model H1 or H2.
8) The tracking errors ej(k), j = 1, 2, are the difference between the real system output y(k) and the
desired outputs yd

j (k) for each operating model.

ej(k) = y(k) − yd
j (k) (6)

Figure 1: Proposed RST flatness-based bi-controller structure using Luenberger observers
based on residual values

Among the existing linear model-based fault-tolerant control schemes, we find the so-called observer-
based technique. This technique has been developed for advanced control theory, where observers are
considered as powerful tools for variables efficient estimation and for faults detection. In our case
of study, Luenberger observers are used for linear models in order to estimate system parameters as
well as to detect sensor fault by analysing the residues which are the difference between the measured
process variables and their estimates. Indeed, a residual signal presents the most important criterion
for an efficient fault detection method.
The proposed ETV switching RST bi-controller based on flatness and on Luenberger observers, in
order to adjust the throttle angular position, is based on a simple reconfiguration structure control
consisting of two combined parts. The first is dedicated to the detection of the operating mode pro-
cess, while the second is for the decision to select the right controller. The ETV process is therefore
controlled by the signal issued by the active controller. This switching strategy is described in the
next subsection.

2.2 Switching strategy

In the context of multi-model formalism, the purpose is to pinpoint the faulty operating model. In
fact, multiple model-based diagnosis approaches are used frequently. Nowadays, various model-based
diagnosis techniques are commonly employed, whereby an operating model of the system under control
is used to compute residuals [19, 20, 21]. The residue is the difference between the measured process
variables and their estimates. Indeed, a residual signal presents the most important criterion for an
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efficient fault reconfiguration control. If the residual exceeds a predefined threshold, then there is a
fault occurrence. Else, it is fault free. A stateflow diagram consists of states, transitions and events
which are used to model the behavior of the studied ETV system. States present the evolution of the
two operating models H1 and H2 of ETV system, transitions represent the conditions of switching
between states obtained by the comparison between the residues of operating models and events rep-
resent the selection of the argument of the smallest residue that causes the transition between states.
The following four steps outline a detection method used to decide when and to which controller one
should switch for the case of RST bi-controller based on Luenberger observers:
1) Simulate the two models H1 and H2.
2) Evaluate the residues r1(k) and r2(k) issued from the corresponding Luenberger observers, charac-
terized, respectively, by L1 and L2 for each operating model output.
3) Represent and simulate the stateflow with the two models H1 and H2 and the transitions by estab-
lishing the logic decision using state machines and flow charts, as illustrated in Figure 2.
4) Select and transfer the smallest residual value index to the state flow chart tool that enables the
control decision. The following detection rule det(k), computed on-line, decides that the process D is
operating in the mth mode Hm at each sampling period Te

det(k) = {D = Hm, m = arg min rj(k), j = 1, 2} (7)

Thus, the jth selected controller and the jth appropriate flat desired trajectory correspond to the
jth argument of the smallest residue.

Figure 2: Stateflow modelling for two models

3 Proposed robust RST bi-controller based-flatness design
The concept of flatness, initially introduced in [16] for nonlinear continuous-time systems, was

extended to discrete-time systems [18, 19, 20, 21] to design control approaches that ensure the tracking
of a desired reference trajectory. The most important significant advantage of differential flatness is
that it enables the direct representation of state and input variables in terms of a flat output and a
finite number of its derivatives, without requiring the integration of any differential equation [16]. As
investigated in this paper, the important benefit of using flatness is its efficiency in trajectory planning
with accuracy.

3.1 Flatness and trajectory planning preliminaries

(a) Flatness

To implement a robust bi-controller, the flatness approach is used in a discrete-time formalism.
For j ∈ {1, 2}, let’s consider the studied dynamic linear discrete-time system described by

Aj(q−1)yj(k) = Bj(q−1)uj(k) (8)

uj(k) and yj(k) are the input and the output, respectively, Aj(q−1) and Bj(q−1), the polynomials
already defined in (2) and (3).
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The parameters aj,i and bj,i are constants, i = 0, 1, ..., n − 1 and q−1 is the causal operator. According
to [16, 18, 19, 20, 21], the discrete flat output zj(k) of a dynamic system can be considered as the
partial state and expressed as a function of the input uj(k) and the output signals yj(k) as follows

uj(k) = Aj(q−1)zj(k) (9)
yj(k) = Bj(q−1)zj(k) (10)

Referring to [18, 19, 20, 21], if the actual output signal yj(k), to be controlled, is not a flat output, it
becomes necessary to determine a desired trajectory planning for the flat output and subsequently to
consider relation (10).

(b) Trajectory planning

The control output variable ud
j (t) must be written as the function of the flat output yd

j (t) and
their derivatives. The relations below can be used to determine the control law [18, 19, 20, 21] for
j ∈ {1, 2}.

ud
j (t) = h(zd

j (t), ..., zd(α+1)
j (t)) (11)

yd
j (t) = g(zd

j (t), ..., zd(σ)
j (t)) (12)

with h and g vectorial functions and zd
j the desired trajectory for the continuous-time flat output that

must be sup(α + 1, σ) time continuously derivable.
To plan the desired flat trajectory zd

j (t), the polynomial interpolation technique is employed. The
state vector Zd

j (t) represents the desired continuous flat output and its successive derivatives.
The two times t0 and tf are pre-determined and the expression of Zd

j (t), for j ∈ {1, 2}, can be
obtained using the method presented in [18, 19, 20, 21]; it comes

Zd
1 (t) = M1,1(t − t0)c1,1(t0) + M1,2(t − t0)c1,2(t0, tf ) (13)

Zd
2 (t) = M2,1(t − t0)c2,1(t0) + M2,2(t − t0)c2,2(t0, tf ) (14)

with matrices M1,1, M2,1, M1,2 and M2,2 defined by

M1,1 =
(

1 t
0 1

)
(15)

M2,1 =
(

1 t
0 1

)
(16)

M1,2 =

 t2

(2)!
t3

(3)!
t t2

(2)!

 (17)

M2,2 =

 t2

(2)!
t3

(3)!
t t2

(2)!

 (18)

and vectors c1,1, c2,1, c1,2 and c2,2 by

c1,1 = Zd
1 (t0) (19)

c2,1 = Zd
2 (t0) (20)

c1,2 = M−1
1,2 (tf − t0)(Zd

1 (tf ) − M1,1(tf − t0)Zd
1 (t0)) (21)

c2,2 = M−1
2,2 (tf − t0)(Zd

2 (tf ) − M2,1(tf − t0)Zd
2 (t0)) (22)

Once the flat trajectory zd
j (k) is planned, the corresponding desired output trajectory yd

j (k) is
established. In the discrete-time context, the actual output of system yj(k) to be controlled, tracks
asymptotically the desired trajectory yd

j (k) expressed by

yd
j (k) = Bj(q−1)zd

j (k) (23)

zd
j (k) are the values of the continuous-time trajectory zd

j (t) at k sampling instant.
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3.2 RST bi-controller structure

Flatness, developed initially for nonlinear systems, has been adapted for both finite dimensional
linear systems in both continuous-time and discrete-time cases then extended to infinite-dimensional
systems. This section outlines the application of RST bi-controller based-flatness to linear systems.
In order to implement an RST bi-controller based-flatness for the open-loop discrete-time process
described by the transfer function (1), a direct computing approach is used for the state vector as
below [18]

Zj(k) =
(
zj(k) zj(k + 1) · · · zj(k + n − 1)

)T
(24)

It comes the controllable form of the system’s state space description{
Zj(k + 1) = AjZj(k) + Bjuj(k)

yj(k) = CjZj(k) (25)

with Zj(k) ∈ Rn the state vector, uj(k) ∈ Rp the input vector, yj(k) ∈ Rm the measure vector, and
Aj ∈ Rn×n, Bj ∈ Rn×p and Cj ∈ Rm×n the known constant matrices, for j ∈ {1, 2}, given by

Aj =



0 1 0 · · · 0
0 0 1 . . . ...
... . . . . . . . . . 0
0 · · · 0 0 1

−aj,0 −aj,1 ... −aj,n−2 −aj,n−1


(26)

Cj =
(
bj,0 bj,1 · · · bj,n−1

)
(27)

Bj =
(
0 0 · · · 0 1

)T
(28)

Then, the control law, based flatness, can be expressed as, [18, 19, 20, 21]

uj(k) = K(q)zd
j (k) + (a − k)Zj(k) (29)

The constant components of the vectors a and k are the coefficients aj,i and ki of the polynomials,
respectively, Aj(q−1) and K(q)

a = (aj,0 aj,1 · · · aj,n−1) (30)

k = (k0 k1 · · · kn−1) (31)

The polynomial K(q) is the denominator of the tracking dynamic which is a discrete-time 4th order
model equivalent to a continuous-time one Gd(s) composed by the cascading of two continuous-time
systems. The first system Gd1(s) is a second order with fixed damping factor ξ and fixed frequency ω0
given by (32). Whereas, the second system Gd2(s) is a second order model with a fixed time constant
τ , given by (33), where s is the Laplace operator.

Gd1(s) = ω2
0

(s2 + 2ω0ξs + ω2
0) (32)

Gd2(s) = 1
(1 + τs)2 (33)

Gd(s) = ω2
0

K(s) (34)

with

K(s) = (s2 + 2ω0ξs + ω2
0)(1 + τs)2 (35)
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K(q) is a polynomial containing the closed loop poles. The dynamics of the closed-loop are defined
by the tracking polynomial K(q−1) such as [18, 19, 20, 21]

Aj(q−1)Sj(q−1) + Bj(q−1)Rj(q−1) = K(q−1) (36)

The choice of closed-loop poles of the polynomial K(q) must be well optimized in order to satisfy the
desired performances. This step is the main contribution of the exploitation of the flatness property in
the design of such robust RST based-flatness bi-controller. Indeed, the choice of the closed-loop poles
corresponds to that of the tracking model of a desired trajectory and, more precisely, to the poles of
the K(q) polynomial.

The RST based-flatness bi-controller’s structure can be, then, obtained by the following equation

Sj(q−1)uj(k) = K(q)zd
j (k) − Rj(q−1)yj(k) (37)

with
Rj

(
q−1

)
= − (a − k) An−1

j O−1
(Aj ,Cj)Qq (38)

Sj

(
q−1

)
= 1 + (a − k)

(
An−1

j O−1
(Aj ,Cj)M(Aj ,Bj ,Cj) −

(
An−2

j Bj ... Bj

))
Q∗

q (39)

and
Qq =

(
q−(n−1) q−(n−2) · · · q−1 1

)T
, Q∗

q =
(
q−(n−1) q−(n−2) · · · q−1

)T
(40)

From this representation, the state space vector becomes

Zj(k) = O−1
(Aj ,Cj)

(
Yj(k) − M(Aj ,Bj ,Cj)Uj(k)

)
(41)

with
Yj(k) =

(
yj(k) yj(k + 1) · · · yj(k + n − 1)

)T
(42)

and
Uj(k) =

(
uj(k) uj(k + 1) · · · uj(k + n − 2)

)T
(43)

M(Aj ,Bj ,Cj) and O(Aj ,Cj) are the controllability and observability matrices respectively, given by

M(Aj ,Bj ,Cj) =



0 · · · · · · 0
CjBj

. . . . . . ...
CjAjBj CjBj

. . . ...
... . . . . . . 0

CjAn−2
j Bj · · · CjAjBj CjBj


(44)

O(Aj ,Cj) =


Cj

CjAj
...

CjAn−1
j

 (45)

The next subsection is dedicated to introduce the conventional Luenberger observers for the two
considered linear models and to study the stability of the ETV system. In addition, LMIs based on
candidate Lyapunov functions are also provided in order to guarantee the stability of the ETV system.

3.3 Luenberger observers design and stability analysis of ETV system

In this paper, for the proposed switching RST bi-controller based-flatness, the fault detection is
based on Luenberger observers used to generate the residual values. The observer’s gains are calculated
using LMIs and consequently the stabiliy of the system is verified by determining a common Lyapunov
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function, [6]. Let the associated jth Luenberger observer of the discrete-time linear system (25) given
by {

Ẑj(k + 1) = AjẐj (k) + Bjuj (k) + Lj (yj (k) − ŷj (k))
ŷj (k) = Cj x̂j (k) (46)

The matrix Lj ∈ Rn×m is the observer gain for the jth model.
Problem. The stability analysis of the overall system for arbitrary switching signals have to be

checked by the choice of a common Lyapunov function [7].
Theorem[3]. Consider the system (25) and assume that the pairs (Aj , Cj) are observable for

j ∈ {1, 2}. If there exists a symmetrical positive definite matrix P as the solution of the algebraic
Lyapunov inequalities

(Aj − LjCj)T P (Aj − LjCj) − P < 0, , j = 1, 2 (47)

then, observer (46) involves an estimation error asymptotically convergent to zero.
Problem. Find Lj such that there exists a symmetric positive definite matrix P solving the

Lyapunov inequalities (47). The above problem can be reduced to a simpler form that is well-suited
to be solved by LMIs method [3] and [7]. To this end, let us consider the following lemma.

Lemma[2]. Given a symmetric positive definite matrix P , the inequality (47) is equivalent to (48)
one, (

P PAj − YjCj

(PAj − YjCj)T P

)
> 0, j = 1, 2 (48)

with
Lj = P −1Yj (49)

3.4 Sensor fault description

In general, the majority of dynamic systems are susceptible to fail and unforeseen behaviors. Thus,
for security problem, many studies are proposed for detection and localization of the ETV faults.
Consequently, it is crucial to promptly detect and pinpoint any disturbances or fault occurrence,
allowing the necessity of diagnostic techniques.

In this context, we suggest an observer-based fault detection method for the ETV. The considered
fault is sensor fault which is modeled by signals that are additive to the output signal. In the state
space description (50) {

Zj(k + 1) = AjZj(k) + Bjuj(k)
yj(k) = CjZj(k) + Fcfc(t)

(50)

fc(t) represents the sensor faults and Fc the distribution matrix of sensor faults. Thus, the evaluation
of residual values of the faulty system can indicate the occurrence of exogenous sensor faults.

4 Application to ETV

4.1 Studied ETV Modelling

In order to illustrate the effectiveness of the proposed RST bi-controller based-flatness, two linear
models of the ETV of Figure 3, [40],[2] characterized by the parameters of Table 1, are considered.

The electrical part of the studied system is modeled by [40]

u(t) = Ri(t) + L
d

dt
i(t) + kvωm(t) (51)

L is the inductance, R the resistance, u(t) and i(t) respectively, the control input voltage and the
armature current, kv the electromotive force constant and ωm(t) the motor rotational speed.
The mechanical part of the throttle is modeled by

J
d

dt
ωm(t) = Ce − Cf − Cr − Ca (52)



https://doi.org/10.15837/ijccc.2023.5.5630 10

Figure 3: Studied ETV system [2]

and by
d

dt
θ(t) = (180/π/γ∗)ωm(t) (53)

Its gear reducer is characterized by its reduction ratio γ∗ such that

γ∗ = CgC−1
L (54)

with CL the load torque, Cg the gear torque, θ(t) the throttle plate angle, J the overall moment of
inertia, Ce = kei(t) the electrical torque with constant ke, Cf the torque caused by mechanical friction,
Cr the spring resistive torque and Ca the torque generated by the airflow, [40] and [23].

The ETV involves two complex nonlinearities due to the nonlinear spring torque Cr and to the
friction torque Cf . They are given by their following static characteristics [40]:

• the dead zone refers to a range where the nominal position of the valve plate remains unaffected
by the control voltage signal,

• the valve plate’s movement is restricted by a maximum and a minimum angles of θ, θmax and
θmin respectively, resulting in the combination of two hysteresis effects and saturation.

The static characteristic of the nonlinear spring torque Cr is such that

Cr = kr

γ∗ (θ − θ0) + Dssgn(θ − θ0) (55)

with: θmin ≤ θ ≤ θmax, kr the spring constant, Ds a constant, θ0 the default position and sgn(, ) the
following signum function

sgn (θ − θ0) =
{

1, if θ ≥ θ0
−1, else (56)

Then, the friction torque function Cf of the angular velocity of the throttle plate can be expressed as

Cf = fvω + fcsgn(ω) (57)

fv and fc are constant parameters.
By substituting in (52), the expressions of Ce, Cf and Cr and by neglecting the torque generated

by airflow Ca, the two nonlinearities sgn(θ − θ0) and sgn(ω) and the two constants krγ∗−1
θ0 and fvω,

the transfer function of the linear model of the studied ETV becomes [40]

H(s) = (180/π/γ∗)ke

JLs3 + JRs2 + (kekv + Lks)s + Rks
(58)

with
ks = (180/π/γ∗2)kr (59)
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Table 1: Model parameters given in ambient temperature of 25◦
C

Parameters Values
R 2.8 (Ω)
L 0.0011 (H)
ke 0.0183 (Nm/A)
kv 0.0183 (v/rad/s)
J 4 × 10−6 (kg.m2)
γ∗ 16.95

The ETV is modeled by two linear models identified from the default position of the throttle plate
where only the value of ks varies, [40]. The system responses are obtained by the proposed RST
bi-controller based-flatness approach from default position of the throttle angle θ0 ≃ 0.22 rad.

Depending on whether, the throttle plate is above or below the default position, then two transfer
functions are obtained, [40].
Indeed, H1(s) represents the first continuous model that depicts the plate’s position above default
position, with a spring constant of ks equal to 1.877 × 10−4kg.m2, [40].

H1(s) = 0.6186
4.4.10−9s3 + 1.12.10−5s2 + 3.351.10−4s + 5.256.10−4 (60)

Whereas, H2(s) represents the second continuous model that illustrates the throttle’s position below
default position, with a spring constant of ks equal to 1.384 × 10−3kg.m2, [40].

H2(s) = 0.6186
4.4.10−9s3 + 1.12.10−5s2 + 3.364.10−4s + 3.875.10−4 (61)

The study was conducted with a sampling period Te = 0.002s [2], consequently, two mathematical
linear models H1(q−1) and H2(q−1) are considered in discrete formalism, respectively, for the two
models H1(s) and H2(s). Hence, the discrete-time transfer functions H1(q−1) and H2(q−1) are defined
by their following expressions (62) and (63)

H1(q−1) = 0.007480q−1 + 0.01334q−2 + 0.0007376q−3

1 − 1.948q−1 + 0.954q−2 − 0.006152q−3 (62)

H2(q−1) = 0.007479q−1 + 0.01333q−2 + 0.0007376q−3

1 − 1.946q−1 + 0.954q−2 − 0.006152q−3 (63)

In the next paragraph, ETV RST bi-controllers based-flatness design is proposed for the predefined
linear models H1(q−1) and H2(q−1) in the discrete-time framework.

4.2 ETV RST bi-controller based-flatness

The reference tracking model Gd(s) corresponds to a fourth-order continuous-time system with a
damping factor of ξ = 0.8, a natural frequency of ω0 = 20 rad/s and a time constant of τ =0.1 s.

The tracking polynomial K(q) is defined by (64).

K(q) = q4 − 3.897q3 + 5.695q2 − 3.699q + 0.9012 (64)

The closed-loop poles of the tracking polynomial are well designed in order to satisfy performances of
the proposed RST bi-controller based-flatness in terms of tracking of desired flat trajectory, distur-
bances rejection and noise attenuation.
Indeed, the poles of the desired polynomial K(q) are: p1,2 = 0.9682 ± 0.0232i and p3 = p4 = 0.9802.
The choice of these poles represents a compromise between the desired fast closed-loop response time
and the robustness of the controllers to be calculated, which allows the sensitivity functions to be
within the template. These poles are also used to define the disturbance rejection dynamics.
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According to the equations (37) and (38), the RST bi-controller based-flatness yields the following
polynomials

R1(q−1) = −0.5484 + 3.825q−1 − 5.899q−2 + 2.625q−3 (65)

R2(q−1) = −2.115 + 6.897q−1 − 7.415q−2 + 2.634q−3 (66)

S1(q−1) = 1 − 0.9496q−1 − 0.005625q−2 − 7.059 × 10−6q−3 (67)

S2(q−1) = 1 − 0.9506q−1 − 0.006032q−2 − 2.723 × 10−5q−3 (68)

After establishing of the RST bi-controller, the stability analysis and the observability of the ETV
system are studied in the next paragraph.

4.3 Luenberger observers and stability analysis of the ETV system

In order to develop the proposed switching bi-controller based flatness, two models of ETV are
given as the state space formulation (25) with matrices A1,A2, B1, B2, C1 and C2 such that

A1 =

 0 1 0
0 0 1

0.006152 −0.9540 1.9480

 (69)

A2 =

 0 1 0
0 0 1

0.006152 −0.9540 1.9460

 (70)

B1 =

0
0
1

 (71)

B2 =

0
0
1

 (72)

C1 =
(
0.0007376 0.01334 0.007480

)
(73)

C2 =
(
0.0007376 0.01333 0.007479

)
(74)

To guarantee the stability of the studied ETV system, LMIs are solved with success. A common
Lyapunov function is found for the two switched linear models. Thus, by applying the Theorem of
subsection 3.3, the ETV system is globally asymptotically stable for the following definite positive
matrix P

P = 10−10 ∗

0.2921 0.0262 0.0637
0.0262 0.1995 0.0123
0.0637 0.0123 0.0814

 (75)

and by applying Lemma and LMIs of subsection 3.3, the calculated Luenberger observer’s gains L1
and L2 in closed-loop case, using LMIs, are

L1 =

 54.5046
36.8992
-56.7202

 , L2 =

 54.4696
36.8886
-56.6852

 (76)

Thus, the Luenberger observer’s gains are determined using linear matrix inequalities taking into
account the stability of the system based on Lyapunov theory. Then, the observers are used in order
to detect and to localize sensor fault occurrence.
By solving LMIs, a common Lyapunov function is found for the switched linear system. Hence, the
problem is feasible and the overall system is globally asymptotically stable.
The following paragraph concerns the design of the robust ETV RST bi-controller based-flatness.
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4.4 Robust ETV RST bi-controller based-flatness design

Despite relevant studies [13, 14] on the introduction and design of robust controllers, achieving high
performance is still a challenging objective. As emphasized in these studies, the significant advantage
of the proposed RST based-flatness bi-controller is its robustness, especially, for high frequencies. In
fact, the developed control law ensures robustness to external disturbances, attenuation of additive
noises and asymptotic tracking of a reference trajectory generated from the flat system. The analysis
of the output sensitivity functions makes easy the choice of tuning parameters for the RST based-
flatness bi-controller.
Indeed, to guarantee the robustness and the performances of the proposed RST bi-controller based
flatness in terms of disturbances rejection and noise attenuation, pre-specified sensitivity functions
can be used, [9, 18, 19].

(a) Robust controller design

In order to obtain robust controllers, are introduced the pre-specified parts HS and HR given by
(77) and (78). The polynomial HS is used to allow the rejection of the static disturbance of the output
signal and the HR polynomial to eliminate the high frequency noises at the input signal [18, 19, 20, 21].

HS(q−1) = 1 − q−1 (77)

HR(q−1) = 1 + q−1 (78)

By taking into account these pre-specified parts, the polynomials of the re-calculated RST bi-controller
based flatness can be expressed by

R̃1(q−1) = HR(q−1)R1(q−1) (79)

R̃2(q−1) = HR(q−1)R2(q−1) (80)

S̃1(q−1) = HS(q−1)S1(q−1) (81)

S̃2(q−1) = HS(q−1)S2(q−1) (82)

The design of the robust RST based-flatness bi-controller is, then, given, in this case for the extended
transfer functions H̃1 and H̃2, as follows

H̃1(q−1) = B1(q−1)HR(q−1)
A1(q−1)HS(q−1) (83)

H̃2(q−1) = B2(q−1)HR(q−1)
A2(q−1)HS(q−1) (84)

and the RST bi-controllers based flatness are obtained by using the method presented given previously
in subsection 3.2.

(b) Sensitivity functions

The sensitivity functions presented below are calibrated and recomputed to ensure the required
performance, depending on the type of disturbance to be taken into account. This is done to maintain
nominal performance even in the presence of modeling errors and reject disturbances [18].

• The disturbance-output sensitivity functions are

Syd,1 = Ã1(q−1)S̃1(q−1)
Ã1(q−1)S̃1(q−1) + B̃1(q−1)R̃1(q−1)

(85)

Syd,2 = Ã2(q−1)S̃2(q−1)
Ã1(q−1)S̃2(q−1) + B̃1(q−1)R̃1(q−1)

(86)
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• And the disturbance-input sensitivity functions are

Sud,1 = −Ã1(q−1)R̃1(q−1)
Ã1(q−1)S̃1(q−1) + B̃1(q−1)R̃1(q−1)

(87)

Sud,2 = −Ã2(q−1)R̃2(q−1)
Ã2(q−1)S̃2(q−1) + B̃2(q−1)R̃2(q−1)

(88)

The study of the robustness of the developed switching RST bi-controller is based on the frequencies
analysis of the modules of the various sensitivity functions. Sensitivity functions desired templates
are defined through the constraints of imposed performances and tolerated robustness margins.The
purpose is to have the disturbance output sensitivity function inside the predefined upper and lower
templates. Furthermore, input sensitivity function should have a decreasing shape showing that the
proposed switching RST bi-controller based flatness is insensitive to noise.

4.5 Simulation results

The polynomial form for the desired flat trajectory expressed in continuous-time, denoted by zd
j (t),

for j = {1, 2}, is presented by the following polynomial form

zd
j (t) =



CONST 1
Bj(1) , if 0 ≤ t ≤ t0

POLY j,1(t), if t0 ≤ t ≤ t1
CONST 2

Bj(1) , if t1 ≤ t ≤ t2

POLY j,2(t), if t2 ≤ t ≤ t3
CONST 1

Bj(1) , if t ≥ t3

(89)

CONST1 and CONST2 are constants, t0 = 4s, t1 = 7s, t2 = 11s and t3 = 16s are the instants
of transitions. For each model, Bj(1) represents the static gain for each operating model. The
polynomials POLY j,1(t) and POLY j,2(t) are calculated using the polynomial interpolation technique,
[18, 19, 20].
For instance, for j = 1 : θmin ≃ 0.4 rad and θmax ≃ 0.9 rad, Figure 4 provides the desired output
trajectories y1

d(k) and y2
d(k) for each operating model.
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Figure 4: Desired trajectories yd
1(k) and yd

2(k)

Figure 5 shows that the two disturbance-output sensitivity functions are within the specified robustness
templates as desired. Additionally, Figure 6 displays an attenuation in the high frequencies of the
disturbance input sensitivity functions by taking values less than 0 db for high frequencies, which
indicates that the noise at the input has been eliminated. These observations show that the robustness
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conditions are satisfied. Consequently, the robustness of the proposed RST switching bi-controller,
based flatness in terms of disturbances rejection and noises attenuation , is guaranteed while respecting
the predefined robustness templates.
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Moreover, the performance of the robust switching RST bi-controller based on flatness and on
Luenberger observers is shown through simulation results of Figures 7, 8, 9, and 10. In fact, the pro-
posed controller has better dynamic performance and robustness with respect to desired flat trajectory
signals even in presence of sensor fault. These results highlight the controller’s ability to achieve high-
performance desired trajectory tracking by rejection of the sensor fault observed at t = 9s. Also,
in Figure 10, the residual values indicate that their behaviors changes and, consequently, a fault de-
tection at the time of the sensor fault occurrence. The obtained results show the efficiency of the
proposed RST bi-controller based on flatness and on Luenberger observers to the exogenous sensor
fault occurrence and the robustness in term of tracking desired flat trajectory.
From the results, it is concluded that the performances of the control strategy are satisfactory. The
switching based flatness bi-controller allows the tracking of the desired throttle position with accuracy
even in the case of sensor fault occurrence. The proposed controllers accommodate sensor fault prop-
erly based on residual values, using stateflow and ensure the stability of ETV system. Notably, Figure
8 shows that the tracking error of the appropriate model is negligible during the transient regime and
completely eliminated in the steady-state even in the presence of sensor fault.



https://doi.org/10.15837/ijccc.2023.5.5630 16

The obtained results reflect that the proposed control, using flatness property, effectively per-
forms high performance during dynamic operating conditions. The control law developed guarantees
robustness to external disturbances and ensures asymptotic tracking of a reference throttle angle gen-
erated from the flat output system. In addition, obtained analysis of the sensitivity functions of the
controllers has facilitated the choice of tuning parameters for RST bi-controller based-flatness.
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5 Conclusion
In this paper, a robust RST bi-controller based on flatness and on Luenberger observers to detect

the sensor fault and/or disturbances of the studied Electronic Throttle Valve (ETV) is proposed. The
reached performances of the proposed robust bi-controller show that the choice of the closed-loop
poles of the tracking dynamics was well designed. Two linear models were identified for the ETV
based on its default throttle plate position, and switching between these models was accomplished
using stateflow tool based on a comparison of the residues generated by a Luenberger observers. The
gains of the observers were obtained by solving a set of LMIs and the system’s stability was established
by using the Lyapunov theory. Simulation results showed the efficiency of the proposed switching RST



https://doi.org/10.15837/ijccc.2023.5.5630 17

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time(s)

C
o

n
tr

o
l 
s
ig

n
a

l 
(V

)

Figure 9: Control signal uj(k) of the selected active controller

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time(s)

R
e

s
id

u
a

l 
s
ig

n
a

ls

 

 

r
1
(k)

r
2
(k)

Figure 10: Residual values rj(k)

bi-controller based-flatness in terms of robustness and of tracking of the desired angle flat trajectory,
rejecting disturbances and detecting sensor fault.

Nevertheless, for experimental implementation of the proposed control law, the control input signal
could exceed the limit values and/or might present discontinuities due to the switching between con-
trollers and consequently the loss of expected performances. In fact, the performances of a transient
response to a reference input are measured in terms of overshoot and settling time. Thus, in order
to enhance the switching transient response performances, we propose to introduce an Anti-Windup
Bumpless Transfer (AWBT) compensators for each controller to minimize the effects of any control
input discontinuities and to compensate the overshoot during the switching time on the closed-loop
performances which will be suggested in future work. Also, as prospects for our work, we suggest
to generalize our proposed approach for multi-controllers as well as the application of the proposed
strategy in real-time ETV system control in presence of sensor and/or actuator faults occurrence and
variations of system parameters.
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