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Abstract: Multi-sensor decision fusion used for discovering important facts hidden in
a mass of data has become a widespread topic in recent years, and has been gradually
applied in failure analysis, system evaluation and other fields of big data process. The
solution to incompleteness is a key problem of decision fusion during the experiment
and has been basically solved by proposed technique in this paper. Firstly, as a
generalization of classical rough set, interval similarity relation is employed to classify
not only single-valued data but also interval-valued data in the information systems.
Then, a new kind of generalized information entropy called "H’-Information Entropy"
is suggested based on interval similarity relation to measure the uncertainty and the
classification ability in the information systems. Thus, the innovated information
filling technique using the properties of H’-Information Entropy can be applied to
replace the missing data by some smaller estimation intervals. Finally, the feasibility
and advantage of this technique are testified by two actual applications of decision
fusion, whose performance is evaluated by the quantification of E-Condition Entropy.
Keywords: Multi-Sensor Decision Fusion, Rough Set Theory, Generalized Informa-
tion Entropy, Information Classification, Information Filling.

1 Introduction

Decision fusion is the general name of data-based decision making methods. The purposes of
these methods are automatically discovering important facts hidden in a mass of data collected
from varieties of sensors or other sources, and expressing them by the natural language of decision
rules. Then, people can effectively use the simplified decision rules to aid decision making in
future applications. Obviously, this target puts forward higher requirements for both sensors
capability and the information processing method. Besides basic statistical method, neural
networks and Bayesian networks, rough set theory as a favorable mathematical tool with high
performance of information acquisition and classification takes into account consequently [1] [2].

The theory of rough set was firstly proposed by Pawlak in 1982 [3]. It is an extension of
classical set theory for the study of information systems characterized by inexact, uncertain
and vague, and has been widely used in the fields of knowledge discovery, decision fusion, data
mining, pattern recognition, and so on. With the rapid development of rough set, some new
frameworks were proposed to extend its application range. The tolerance relation [4], valued
tolerance relation [5], similarity relation [6], together with the limited tolerance relation [7], laid
a solid foundation for the progress of generalized rough set. Until now, the improvements of
binary relations are still attracting the scholars attentions [8]- [11].

As to decision fusion of multi-sensor, data acquired from different sensors is real-valued
which characterizes objects of interest. Because of the imprecision of acquisition, the fuzziness of
cognition and the limitation of knowledge [12] [13], these attributes with real-valued data usually
expressed as Single-valued Information System (SIS), Interval-valued Information System (IIS)

Copyright © 2006-2014 by CCC Publications



A New Information Filling Technique Based On Generalized Information Entropy 173

or the combination of SIS and IIS cannot be classified by any binary relation mentioned above
absolutely. The discretization of a long interval by dividing the range into a certain number
of partitioning small intervals and using symbolic values to replace these small intervals before
further calculation is the popular handling method [14] [15], but existing dispute about the
cut-off points [16]. Additionally, the classical rough set may generate an unacceptably large
number of classifications from the discretized data resulting in too many classification rules to
make final decisions. More important, data missing and uncertain called incompleteness may
occur unavoidably because of loss of documents, difficulties of measurement or malfunction of
sensors, and increases the difficulties of information processing [17]. The direct information
filling methods have not been paid enough attention to, and existed methods [12] [13] are lack of
precision to make optimal decisions. Thereupon, the researches of solutions to the classifications
and the incompleteness in information systems, together with the following calculations of rough
set become significant [18].

In this paper, the discussions are paying attention to solve above issues based on rough
set theory emphatically. The notion, properties and measurement of generalized rough set are
reviewed firstly in Section 2. In Section 3, a brand new “H’-Information Entropy" is defined for
the measurement of uncertainty and classification ability in the information systems according
to the interval similarity relation. In Section 4, an innovated information filling technique is
proposed by the use of H’-Information Entropy to solve the incompleteness in both SIS and
IIS, whose performance is evaluated by the quantification of E-Condition Entropy. In Section
5, the advantage and practicability of this new information filling technique are testified by
two integrated examples. The missing data in the decision table is filled by smaller estimation
intervals and the certain decision rules are extracted by the calculation of rough set finally.

2 The Theory of Generalized Rough Set

Information systems with the form of decision tables provide a convenient basis for the
representation of objects in terms of their attributes. But the uncertainty and incoordination
take place in most of decision tables. Thereupon, rough set as a powerful method is used to deal
with these issues.

2.1 Basic Concept

Let S = (U,A) be an information system, where U = {u1, u2, . . . , u|U |} (|U | means the
cardinality of U) is a non-empty finite set of objects, denoting the whole research objects of the
information system. A = {a1, a2, . . . , an} is a non-empty finite set of attributes, denoting the
whole attributes of the information system. f : U → Va is a mapping for a ∈ A ,where Va is
called the domain of attribute a. This constitutes the basic research contents of rough set.

Let P ⊆ A be a subset of attributes. T is a binary relation (including but not limited to
equivalence relation). Sp(u) denotes the object set {v ∈ U |(u, v) ∈ T} , called a class or an
information granule. If (ui, uj) ∈ T , then SP (ui) ̸= SP (uj) in general conditions.

The whole classes of U are obtained according to T [19]:

K(P ) = (SP (u1), SP (u2), . . . , SP (u|U |)) (1)

At this time, K(P ) is not restricted to “partition", but may be the “covering" of U , namely:

∪SP (ui) = U i = 1, 2, . . . , |U | (2)

Then, a rough set can be described by the definitions of lower and upper approximations.
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Definition 1. Let S = (U,A) be an information system, X ⊆ U . With an arbitrary binary
equivalence relation on U , the lower and upper approximations of X are [3]:

R(X) = ∪{SP (ui)|SP (ui) ⊆ X} i = 1, 2, . . . , |U | (3)

R(X) = ∪{SP (ui)|SP (ui) ∩X ̸= ∅} i = 1, 2, . . . , |U | (4)

The covering-based rough set is the great generalization of classical rough set. So, the appli-
cation range of rough set is extended significantly.

2.2 The Measurement of Rough Set

The uncertainty in rough set refers to the size of classes called information granules generally
determined by specified attributes in the information system. It can be measured by information
entropy [20]. Small information granules imply a precise description of rough set.

Definition 2. Let S = (U,A) be an information system, and P ⊆ A be a subset of attributes.K(P ) =
(SP (u1), SP (u2), . . . , SP (u|U |)) are the classes of U created by some binary relation according to
P . Information entropy of P is defined as [19]:

H(P ) = −
|U |∑
i=1

1

|U |
log2

|SP (ui)|
|U |

(5)

This definition of entropy is called “H-Information Entropy". In other words, H-Information
Entropy quantifies the classification ability of objects set U according to the attributes subset
P .

The relationship between different classes can be compared by partial relation “ ≼ ”. Let
P,Q ⊆ A be subsets of attributes. If K(P ) = (SP (u1), SP (u2), . . . , SP (u|U |)) and K(Q) =
(SQ(u1), SQ(u2), . . . , SQ(u|U |)). The partial relation “ ≼ ” is defined as:

K(P ) ≼ K(Q) ⇔ ∀i = 1, 2, . . . , |U |, SP (ui) ⊆ SQ(ui) (6)

Theorem 3. If K(P ) ≼ K(Q), then H(Q) ≤ H(P ) [19].

This theorem explains that H-Information Entropy is monotone increasing with the decrease
of elements in each class. The thinner classes are obtained by stricter binary relations. The
bigger the H-Information Entropy is, the smaller the information granules will be.

In order to mine the internal relations of subsets P and Q, the research of coordination of
these two attributes becomes significant. The result embodies the support degree of one subset
of attributes to another. It is just the major application of rough set in decision fusion.

The condition entropy is introduced to measure this support degree [21]. It is proved that
E-Condition Entropy is suitable for both partition-based and covering-based rough set [19] [22].

Definition 4. Let P,Q ⊆ A be two subsets of attributes. IfK(P ) = (SP (u1), SP (u2), . . . , SP (u|U |))
and K(Q) = (SQ(u1), SQ(u2), . . . , SQ(u|U |)), then E-Condition Entropy is:

E(Q/P ) =

|U |∑
i=1

|SP (ui)| − |SP (ui) ∩ SQ(ui)|
|U |2

(7)

In particular, if K(P ) ≼ K(Q), which means the classes obtained by P are totally included
in the classes obtained by Q, then E(Q/P ) = 0 [23]. Thus, some attributes “entirely" support
the some others. Rough set degenerates to the classical set. It is considered that if E-Condition
Entropy is small, the support degree is high. Then, the coordination in rough set is better.
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3 Generalized Information Entropy

In the decision tables, the values of attributes may be some interval ranges instead of simple
single values. In order to measure the uncertainty in such kind of system, the new information
entropy is defined in this section, called H’ information entropy.

3.1 Interval Similarity Relation

The information system with interval-valued data is now called Interval-valued Information
System (IIS).

Definition 5. Let S = (U,A) be an IIS. If x ∈ U and a ∈ A, then the interval range of f(x, a)
is denoted as f(x, a) = [f(x, a)L, f(x, a)U ].

As mentioned in Introduction, it is clear that the classical binary relations are not suitable for
the classifications of IIS now. Additionally, it is considered that the length of interval implies the
uncertainty of cognition. Because the intersection degrees among objects are highly different, the
negligence will enlarge the possibility of intersection factitiously. Thus, the classification ability
and the cognition of the system will be reduced. So, the interval similarity relation is employed
as the binary relation to classify the objects of IIS in this paper.

Definition 6. Let S = (U,A) be an IIS. x, y ∈ U and a ∈ A. The interval similarity degree of
f(x, a) and f(y, a) is defined as:

P a
xy =

|f(x, a) ∩ f(y, a)|
|f(x, a) ∪ f(y, a)|

(8)

where || means the absolute length of interval.

In particular, there may exist some single-valued data in IIS in practical applications. That
is f(x, a) = f(x, a)L = f(x, a)U = Constant. In order to generalize the definition of interval
similarity degree, if f(y, a) = [f(y, a)L, f(y, a)U ] and Constant ∈ [f(y, a)L, f(y, a)U ], then we
define P a

xy = 1, and vice versa. Thus, the definition of similarity degree can be improved.

Definition 7. Let S = (U,A) be an IIS. x, y ∈ U and a ∈ A. the interval similarity relation is
defined as:

S(A) = {(x, y) ∈ U × U |P a
xy ≥ α,∀a ∈ A} (9)

where α is the similarity threshold value.

Obviously, if f(x, a) and f(y, a) are both single-valued data, then the interval similarity
relation will degenerate to simple equivalence relation by this definition.

Deduction 1. The interval similarity relation satisfies reflexivity and symmetry.

It is significant that if an information system is classified by interval similarity relation, the
interval length has direct effect on the classification ability. That is interval similarity may affect
information entropy of the system.

3.2 Definition of Generalized Information Entropy

As the improvement, interval similarity degree defined in Equation (8) will be added to clas-
sical information entropy. A new kind of generalized information entropy is defined to measure
the uncertainty and classification ability in the information systems.
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Definition 8. Let S = (U,A) be an information system and B ⊆ A be a subset of attributes.
K(B) = (SB(u1), SB(u2), . . . , SB(u|U |)) are the classes of U created by interval similarity relation
according to B. Pxy is the minimum interval similarity degree between two objects (x and y).

Pxy =

{
min{P k

xy} P k
xy > 0,∀k ∈ B

0 else
(10)

The generalized information entropy called “H’-Information Entropy" is defined as:

H′(B) = −
|U |∑
i=1

1

|U |
log2

|U |∑
j=1

Puiuj

|U |
(11)

Deduction 2. H’-Information Entropy satisfies non-negativity, symmetry, continuity, monotonic-
ity and extremum property.

Proof.
1) By the definition of interval similarity degree, it is obvious that 0 ≤ Puiuj ≤ 1 . Then,

0 <

|U |∑
j=1

Puiuj ≤ |U | ⇒ 0 <

|U |∑
j=1

Puiuj

|U |
≤ 1 ⇒ − log2

|U |∑
j=1

Puiuj

|U |
≥ 0 (12)

That is H’-Information Entropy is nonnegative.
2) Moreover, because of the symmetry of interval similarity degree (Puiuj = Pujui), H’-

Information Entropy is also symmetric.
3) The numerical ranges of Puiuj are continuous and Puiuj constitute the whole variables of H’-

Information Entropy. The operations of addition, multiplication, and logarithm are continuous
totally. Hence, H’-Information Entropy keeps the continuity.

4) Let S = (U,A) be an information system and B1, B2 ⊆ A be subsets of attributes. The
condition that B1 ⊆ B2 is assumed, then there is K(B2) ≼ K(B1) [24].

Because PB1
xy = min{P k

xy} (P k
xy > 0, ∀k ∈ B1) and PB2

xy = min{P k
xy} (P k

xy > 0, ∀k ∈ B2), with
the assumption B1 ⊆ B2 , the consequent that PB1

xy ≥ PB2
xy is obtained. Hence, H′(B1) ≤ H′(B2).

As a result,
K(B2) ≼ K(B1) ⇒ H′(B1) ≤ H′(B2) (13)

It should be noticed that this monotonicity is under the constraint (B1 ⊆ B2) in this paper.
If there is no inclusion relation between two subsets of condition attributes, this monotonicity
may be broken down.

5) If
|U |∑
j=1

Puiuj = 1, then H′(B) = log2 |U |. If
|U |∑
j=1

Puiuj = |U |, then H′(B) = 0. Hence, there

exist two extreme values.

4 The Solution to Incompleteness

Data missing and uncertain called incompleteness occur commonly in data acquisition by
multi-sensor. In this section, the research focus will turn to this incomplete information system
and try to find the solution to incompleteness.
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4.1 The New Information Filling Technique

Now, a new information filling method is proposed based on the H’-Information Entropy
defined above.

Theorem 9. In an IIS with one attribute, it will assuredly increase the H’-Information Entropy
when a new object of minimal interval is added into the system.

Proof. Let S = (U,A) be an IIS. ∀a ∈ A, S = (U, a) is an IIS with one attribute. u|U+1| is
the newly added object. There are:

f(u|U+1|, a) = [f(u|U+1|, a)
L, f(u|U+1|, a)

U ] (14)

|f(u|U+1|, a)| = f(u|U+1|, a)
U − f(u|U+1|, a)

L = δ (15)

When u|U+1| is added into original IIS, the new H’-Information Entropy is:

H′(a)1 = −
|U+1|∑
i=1

1

|U + 1|
log2

|U+1|∑
j=1

Puiuj

|U + 1|

= − 1

|U + 1|
(log2

|U |∑
j=1

Pu1uj + Pu1u|U+1|

|U + 1|
+ log2

|U |∑
j=1

Pu2uj + Pu2u|U+1|

|U + 1|
+ · · ·

+ log2

|U |∑
j=1

Pu|U|uj + Pu|U|u|U+1|

|U + 1|
+ log2

|U |∑
j=1

Pu|U+1|uj + Pu|U+1|u|U+1|

|U + 1|
) (16)

Obviously, Pu|U+1|u|U+1| = 1.
|U |∑
j=1

Puiuj (i = 1, 2, . . . , |U |) is unchanged since the newly added

object does not affect the intersection relations in original system. When δ is a minimal interval,
there is δ ≪ |f(ui, a)|(i = 1, 2, . . . , |U |). Therefore, whether δ has an intersection with other
interval or not, it is obtained:

Puiu|U+1| = Pu|U+1|ui = 0 i = 1, 2, . . . , |U | (17)

As a result:

H′(a)1 = − 1

|U + 1|
(log2

|U |∑
j=1

Pu1uj

|U + 1|
+ log2

|U |∑
j=1

Pu2uj

|U + 1|
+ · · ·+ log2

|U |∑
j=1

Pu|U|uj

|U + 1|
+ log2

1

|U + 1|
)

def
= H′(a)10 (18)

Let
|U |∑
j=1

Puiuj = Pi for convenience, then:

H′(a)10 = − 1

|U + 1|
(log2

P1

|U + 1|
+ log2

P2

|U + 1|
+ · · ·+ log2

P|U |

|U + 1|
+ log2

1

|U + 1|
)

= − 1

|U + 1|
log2

P1P2 · · ·P|U |

|U + 1||U+1|

=
1

|U + 1|
log2

|U + 1||U+1|

P1P2 · · ·P|U |
(19)
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The H’-Information Entropy of original system is:

H′(a)0 = −
|U |∑
i=1

1

|U |
log2

|U |∑
j=1

Puiuj

|U |

=
1

|U |
log2

|U ||U |

P1P2 · · ·P|U |
(20)

Because |U | ≥ 1 and Pi ≥ 1(i = 1, 2, . . . , |U |), Hence,

H′(a)10 =
1

|U + 1|
log2

|U + 1||U+1|

P1P2 · · ·P|U |

= log2 |U + 1| − 1

|U + 1|
log2(P1P2 · · ·P|U |)

> log2 |U | − 1

|U + 1|
log2(P1P2 · · ·P|U |)

> log2 |U | − 1

|U |
log2(P1P2 · · ·P|U |)

= H′(a)0 (21)

It is clear that, Theorem 9 can be expanded to a SIS. That is in a SIS with one attribute,
when a new object of minimal interval is added into the system, it will assuredly increase the
H’-Information Entropy if the interval range of newly added object doesn’t include any existed
single-valued data in the attribute. As long as this promise exists, Puiu|U+1| = Pu|U+1|ui = 0
as well according to Equation (8). Consequently, the simplifying process from Equation (16) to
(18) stays the same.

In order to make the research more intuitive, the following discussions are based on the
assumption that the increase of interval is unidirectional. Hence, the lower limit or upper limit
is fixed.

Theorem 10. In an information system with one attribute, the H’-Information Entropy will be
monotone decreasing with the interval increase of newly added object within a limit.

Proof. Followed by previous proof, δ is increased gradually.
1) If the original system is an IIS, obviously, only the terms of pi

def
= Puiu|U+1| = Pu|U+1|ui =

|f(ui,a)∩δ|
|f(ui,a)∪δ| are changing during the increase of δ. Firstly, H′(a)1 will be monotone decreasing
because of the continuous increase of pi. The increase trend of pi will be sustained until the
intersection of ui(i = 1, 2, . . . , |U |) and u|U+1| is steady, which means the upper /lower limit of δ
reaches the upper /lower limit of arbitrary ui (as showed in Fig.1). After that, |f(ui, a)∩ δ| is a
constant while |f(ui, a) ∪ δ| is still increased. Then, pi will turn to decrease. Once this happens
to any ui ∈ U , the trend of H′(a)1 may be changed.

2) If the original system is a SIS, there should exist growing amount of pi = 1(i = 1, 2, . . . , |U |)
with the increase of δ. Thus, H′(a)1 will be monotone decreasing until the interval range of δ
is long enough to cover the largest number of original single-valued data in the domain of the
attribute a.

Theorem 10 shows that the newly added object will have more opportunity to be classified
with other objects with interval increase under the interval similarity relation. This phenomenon
will cause the weakness of classification ability and the reduction of information entropy.
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Figure 1: Intersection of Two Intervals.

Deduction 3. In an information system with one attribute, there is a minimum value of H’-
Information Entropy with the interval increase of newly added object.

H′(a)1 is continuous according to Deduction 2 and it has been proved thatH′(a)1 is monotone
decreasing within a limit. Consequently, there is a minimum value in the limit.

Deduction 4. In an IIS with one attribute, after the upper /lower limit of newly added object
reaches the maximal /minimal value in the domain of the attribute a, the H’-Information Entropy
will be monotone increasing with the interval increase.

Deduction 5. In an SIS with one attribute, after the upper /lower limit of newly added object
reaches the maximal /minimal value in the domain of the attribute a, the H’-Information Entropy
will be a constant with the interval increase.

In an IIS, once the upper /lower limit of newly added object reaches the upper /lower limit
of interval-valued data of entire original objects, pi will turn to decrease with the increase of δ
for all ui ∈ U . Then, H′(a)1 is changed to increase assuredly. Meanwhile, in a SIS, once the
upper /lower limit of newly added object reaches the maximal /minimal value of single-valued
data of entire original objects, pi will be the number of covered single-valued data and remains
unchanged regardless of the interval extension. Then, H′(a)1 is a constant assuredly.

The deductions above explain that when the interval of the newly added object is increased
from zero to the maximal /minimal value in the domain of the attribute a, there exists at least
one global minimum value of H’-Information Entropy.

Now, the missing data in the information systems can be dealt with above-mentioned results.
The new information filling technique follows the assumption that the objects with missing data
have no effect with the classifications of information. In other words, regardless of the existing
of the existence of these incomplete objects, the information entropy of corresponding condition
attribute should be unchanged.

The process of the new information filling technique is considered as a new object of min-
imal interval adds into the complete information system attribute by attribute. Then, the H’-
Information Entropy is surely increased implying the rapid improvement of classification ability.
According to Deduction 3, 4 and 5, the trend of H’-Information Entropy is decreased firstly and
increased or flat finally. The filling interval is expected to make the H’-Information Entropy
close to the original one as much as possible before the upper /lower limit reaches the maximal
/minimal value in the domain of corresponding attribute. Thus, a smaller filling interval is ob-
tained. Because of the expanded definition of interval similarity relation, this new information
filling technique can be applied for both IIS and SIS.

In general, the process is listed below.
1) Calculate the H’-Information Entropy (H′(a)0) of original information system for each

condition attribute without incomplete objects.
2) Add a new object with minimal interval (δ = 10−3 is recommended) to one attribute. If
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the original system is SIS, the lower /upper limit of the interval should be set at the left /right
side of minimal /maximal value in the domain of corresponding attribute of the objects with
the same decision. If the original system is IIS, the lower /upper limit of the interval should be
known and fixed in advance just like the forms of f(x, a) = [f(x, a)L, ∗] or f(x, a) = [∗, f(x, a)U ].
Thus, the initial position marked as A is established. The H’-Information Entropy is H′(a)1|start
at the beginning.

3) Forward /backward increase the length of the new interval by a setting step size until its
upper /lower limit reaches the maximal /minimal value in the domain of the attribute. Fig.2 is
just showing the process of forward increasing for instance. Calculate the new H’-Information
Entropy for each step. Record the following data:

a. Mark the position of interval’s upper /lower limit as B when the corresponding new H’-
Information Entropy reaches global minimum value H′(a)1|min for the first time.

b. The position of maximal /minimal value in the domain of the attribute is marked as C,
and the corresponding H’-Information Entropy is H′(a)1|end.

c. Mark the position of interval’s upper (lower) limit as D when the corresponding new
H’-Information Entropy is equal to the original H’-Information Entropy (H′(a)1 = H′(a)0) for
the first time. D may not exist in some cases.

4) If H′(a)1|min ≤ H′(a)0 , then the estimation interval is |A − D| (as showed in Fig.
2(Left)).If H′(a)1|min > H′(a)0 ,then the estimation interval is |A − B| (as showed in Fig.
4(Right)). Thus, there are |A−D| ≤ |A−C| and |A−B| ≤ |A−C|, so the estimation interval
is shortened.

( ) ( ( ), ( ),..., ( ))

( ) ( ( ), ( ),..., ( ))

( ) ' ( ( ) ', ( ) ',..., ( ) ')

Figure 2: Variation Curve of H’-Information Entropy.

4.2 Performance Analysis

In order to check the performance of proposed information filling technique, a deduction is
introduced firstly.
Deduction 6. In an information system, the shortening of estimation intervals will improve the
coordination of the system.

Proof. Let S = (U,A) be an information system. A = C∪D , where C is the set of condition
attributes and D is set of the decision attributes. If B ⊆ C , then the classes obtained according
to B and D are:

K(B) = (SB(u1), SB(u2), . . . , SB(u|U |)) (22)

K(D) = (SD(u1), SD(u2), . . . , SD(u|U |)) (23)

With the shortening of estimation intervals in B, there exists a new classification:

K(B)′ = (SB(u1)′, SB(u2)′, . . . , SB(u|U |)′) (24)
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Obviously, short estimation interval will decrease the intersection degree and reduce the
objects in the classes made by interval similarity relation. That is SB(ui)′ ⊆ SB(ui), |SB(ui)′| ≤
|SB(ui)| (i = 1, 2, . . . , |U |). Hence, SB(ui)′ ∩SD(ui) ⊆ SB(ui)∩SD(ui) and |SB(ui)′ ∩SD(ui)| ≤
|SB(ui)∩SD(ui)|. E-Condition Entropy studied in Section 2.2 is used to measure the coordination
in rough set. According to its definition, there is:

E(D/B)− E(D/B)′ =

|U |∑
i=1

|SB(ui)| − |SB(ui) ∩ SD(ui)|
|U |2

−
|U |∑
i=1

|SB(ui)′| − |SB(ui)′ ∩ SD(ui)|
|U |2

=

|U |∑
i=1

|SB(ui)| − |SB(ui)′| − (|SB(ui) ∩ SD(ui)| − |SB(ui)′ ∩ SD(ui)|)
|U |2

=

|U |∑
i=1

|SB(ui)| − |SB(ui)′| − |(SB(ui)− SB(ui)′) ∩ SD(ui)|
|U |2

≥ 0 (25)

The equality holds if and only if (SB(ui)− SB(ui)′) ⊆ SD(ui). So, E(D/B) ≥ E(D/B)′.
It is mentioned that small E-Condition Entropy implies great support degree, which means

the shortening of estimation intervals improves the coordination between corresponding condition
attributes and decision attributes. Because of the generality of this result to the whole condition
attributes, the coordination of the information system is improved consequently.

Now, the benefits of smaller estimation intervals obtained in this paper are reflected in two
aspects. On the one hand, the coordination between condition attributes and decision attributes
is improved according to Deduction 6. That is the positive region in the rough set is expanded,
while the uncertainty is decreased. The reliability of decision will be increased as a result. On
the other hand, the shortened estimation intervals are beneficial for decision making. The new
decision rules will be fine and precise with the extending of covering range.

5 Experimental Studies

The new information filling technique can be applied to process the incompleteness in large
amounts of data acquired by different sensors for decision fusion in a variety of fields. Here,
two integrated experiments will be studied below to validate the feasibility and superiority of
proposed method.

5.1 Single-valued Data Estimation and Filling

In the study of single-valued data evaluation and filling, a part of ICU data of one patient
is acquired by different sensors and listed in Table 1. In this decision table, the Column "U"
refers to the times of examinations. Columns "c1" to "c5" denote the data acquired by sensors
of temperature, heart rate, systolic blood pressure, spo2 and respiration rate, and compose five
condition attributes. The Column "d" denotes four degrees of ICU decisions and composes the
decision attribute. Furthermore, the missing data is denoted as "∗" in the table.

By applying the new information filling technique, a small interval can be estimated to fill
the missing data. Figure 3 shows this process of information filling and we can get f(u17, c1) =
[36.3, 36.4] (as showed in Figure 3(left)) and f(u3, c3) = [103.0, 115.9] (as showed in Figure
3(right)) as a result.

Then, E-Condition Entropy discussed before can be used to evaluate the performance of
above result. We get E(D/C) = 0 without the objects with missing data, meaning the condition
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U c1 c2 c3 c4 c5 d

1 37.8 62.0 103.0 94.0 18.0 2
2 37.7 61.0 120.0 97.0 16.0 2
3 37.7 61.0 * 97.0 16.0 2
. . . . . . . . . . . . . . . . . . . . .
14 37.3 62.0 116.0 98.0 18.0 3
15 37.3 62.0 116.0 98.0 18.0 3
16 37.3 62.0 116.0 98.0 18.0 3
17 * 111.0 142.0 95.0 20.0 1
18 36.3 111.0 142.0 95.0 20.0 1
19 36.4 111.0 142.0 95.0 20.0 1
. . . . . . . . . . . . . . . . . . . . .
49 36.7 98.0 133.0 92.0 20.0 4
50 36.7 98.0 133.0 92.0 20.0 4

Table 1: Incomplete ICU Data.

] ] ] 730]

] ] ] 5.658]

] ] 26.819]

... ...

0.033] ] 826]

... ...

21 4.997] ] 848]

... ...

5 ] ] 806]

... ...

... ...

31 4.997] 0.038] 4.999]

... ...

Figure 3: Information Filling of ICU data.

attributes entirely support each decision in the original system. Then, this index is still 0 when
u3 and u17 with filling intervals are added to the system. That is the new information filling
technique doesn’t change the coordination between condition attributes and decision attribute
in this example and the results make sense.

5.2 Interval-valued Data Estimation and Filling

In the study of interval-valued data estimation and filling, a part of thruster experimental
data is acquired by different sensors. In order to simplify the table, only the objects with missing
data denoted as "∗" are listed in Table 2. The Column "U" refers to the times of experiment.
Columns "c1" to "c4" denote the data acquired by different pressure and temperature sensors,
and compose four condition attributes. These acquired data is formed as interval values including
the minimum and maximum from the each sensor without data preprocessing. The Column "d"
denotes three types of failure simplified as symbolic values and composes the decision attribute.
We need to fill the missing data effectively and discover the failure rules hidden in the data as
accurately as possible.

1) Firstly, the decision table is completed by the method in Ref. [13] and showed in Table 3.
Briefly, "∗" is replaced by the minimal /maximal value in the domain of each condition attribute.

2) Then, the decision table is completed by the new information filling technique proposed
in this paper and showed in Table 4.

In order to reveal the difference between above two methods, the classifications of condition
attributes are made by interval similarity relation. The cardinality of each class obtained by the
two methods can be compared in Figure 4.
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U c1 c2 c3 c4 d

3 [4.344, 4.604] [0.029, 0.037] [4.600, *] [23.865, 26.819] 1
6 [4.283, *] [0.024, 0.033] [4.613, 4.889] [23.872, 25.826] 1
21 [4.801, 4.997] [0.027, 0.035] [*, 4.516] [28.700, 30.848] 2
25 [*, 4.993] [0.023, 0.030] [4.627, 4.904] [28.663, 30.806] 2
28 [4.445, 4.711] [0.025, 0.037] [4.236, 4.490] [28.826, *] 2
43 [2.629, *] [0.024, 0.037] [4.600, 4.876] [30.881, 32.116] 3
46 [2.653, 3.812] [0.025, 0.033] [4.619, 4.896] [30.016, *] 3
55 [1.470, 2.551] [0.027, 0.030] [4.507, *] [30.497, 31.717] 3
. . . . . . . . . . . . . . . . . .

Table 2: Incomplete Thruster Experimental Data.

U c1 c2 c3 c4 d

3 [4.344, 4.604] [0.029, 0.037] [4.600, 4.999] [23.865, 26.819] 1
6 [4.283, 4.999] [0.024, 0.033] [4.613, 4.889] [23.872, 25.826] 1
21 [4.801, 4.997] [0.027, 0.035] [4.062, 4.516] [28.700, 30.848] 2
25 [1.015, 4.993] [0.023, 0.030] [4.627, 4.904] [28.663, 30.806] 2
28 [4.445, 4.711] [0.025, 0.037] [4.236, 4.490] [28.826, 32.150] 2
43 [2.629, 4.999] [0.024, 0.037] [4.600, 4.876] [30.881, 32.116] 3
46 [2.653, 3.812] [0.025, 0.033] [4.619, 4.896] [30.016, 32.150] 3
55 [1.470, 2.551] [0.027, 0.030] [4.507, 4.999] [30.497, 31.717] 3
. . . . . . . . . . . . . . . . . .

Table 3: Completed Thruster Experimental Data 1.

The histogram indicates that, with the same binary relation, more than 30% classes obtained
from the completed decision table by the new information filling technique are “thinner" than
before. That is, the new information filling technique can achieve a classification ability no less
than the traditional one. The classes are more precise and the uncertainty is lower now. Addi-
tionally, E-Condition Entropy is calculated as E(D/C) = 0.0033 in Table 4, while this index is
0.0106 in Table 3. The result also implies a better coordination obtained by the new information
filling technique between condition attributes and decision attributes.

Then, the reduct of the system is c1, c3, c4 obtained by heuristic algorithm of attribute re-
duction based on E-Condition Entropy [22] [25]. The certain decision rules (failure rules) can be
achieved explicitly (as showed in Table 5) since all the missing data has been filled.

At present, the estimation intervals in each attribute are relatively small in this group of
certain failure rules. It has a better significance for the practical decision making. The result is
agreed with the performance analysis in Section 4.2. Consequently, the problems of incomplete-
ness in thruster experimental data are solved and the failure rules are achieved favorably.

 

Figure 4: Cardinality of Each Class.
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U c1 c2 c3 c4 d

3 [4.344, 4.604] [0.029, 0.037] [4.600, 4.753] [23.865, 26.819] 1
6 [4.283, 4.601] [0.024, 0.033] [4.613, 4.889] [23.872, 25.826] 1
21 [4.801, 4.997] [0.027, 0.035] [4.235, 4.516] [28.700, 30.848] 2
25 [4.877, 4.993] [0.023, 0.030] [4.627, 4.904] [28.663, 30.806] 2
28 [4.445, 4.711] [0.025, 0.037] [4.236, 4.490] [28.826, 30.471] 2
43 [2.629, 3.810] [0.024, 0.037] [4.600, 4.876] [30.881, 32.116] 3
46 [2.653, 3.812] [0.025, 0.033] [4.619, 4.896] [30.016, 31.240] 3
55 [1.470, 2.551] [0.027, 0.030] [4.507, 4.837] [30.497, 31.717] 3
. . . . . . . . . . . . . . . . . .

Table 4: Completed Thruster Experimental Data 2.

Rules Descriptions
R1 If c1 ∈ [4.458, 4.725] ∧ c3 ∈ [4.867, 4.997] ∧ c4 ∈ [23.779, 25.730], then d = 1
R2 If c1 ∈ [4.456, 4.732] ∧ c3 ∈ [4.358, 4.619] ∧ c4 ∈ [23.717, 25.658], then d = 1
. . . . . .
R19 If c1 ∈ [4.801, 4.997] ∧ c3 ∈ [4.235, 4.516] ∧ c4 ∈ [28.700, 30.848], then d = 2
R20 If c1 ∈ [4.817, 4.989] ∧ c3 ∈ [4.350, 4.611] ∧ c4 ∈ [29.200, 30.328], then d = 2
. . . . . .
R35 If c1 ∈ [2.947, 4.215] ∧ c3 ∈ [4.868, 4.999] ∧ c4 ∈ [30.391, 31.607], then d = 3
R36 If c1 ∈ [3.678, 4.047] ∧ c3 ∈ [4.358, 4.619] ∧ c4 ∈ [29.950, 31.148], then d = 3
. . . . . .

Table 5: Certain Decision Rules.

6 Conclusions

The solution to incompleteness in decision fusion is presented with the help of a new informa-
tion filling technique based on generalized information entropy in this paper. Interval similarity
relation is employed as the binary relation to classify both single-valued and interval-valued data
acquired by different sensors. As the improvement of classical rough set, a new kind of general-
ized information entropy called H’-Information Entropy is provided to solve the incompleteness
occurring unavoidably in information systems. So, the missing data in the decision tables can
be filled evidently and favorably. The calculation procedure of this innovated information fill-
ing technique is listed in detail. Finally, two integrated examples are given to evaluate the
performance of proposed method. The results turn out the superiority and practicality in real
applications.
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