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Abstract: In this paper a metamodel for an Adaptive Control System (ACS) is
described. This metamodel was built employing USE, which is a UML-based specifi-
cation environment. The main goal of the metamodel is to complement other models
describing different views of an ACS. As the reader will notice, the metamodel is com-
posed of a graphical and a mathematical model. Weak constraints are specified in
the graphical model using a Unified Modeling Language (UML) class diagram, while
strong constraints are defined in the mathematical model using the Object Constraint
Language (OCL).
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1 Introduction

A software process describes who is doing what, how, and when [9]. One of the phases of a
software process is design. In this phase a model of a system, that will later be implemented, is
constructed [15]. This model is useful to detect flaws but also for documenting and to establish
a communication channel with system’s user. Depending on the process being constructed de-
signers can use text or mathematics or a combination of both to build models. An advantage of
using text, which is an informal technique, is that the resulting design is easy to understand and
can be rapidly constructed. Its disadvantage is that sometimes a model made using an informal
technique can lead to a misunderstanding. Formal models, which rely on mathematics, do not
have this disadvantage.

On the other hand, control systems are used in industry to assist control engineers in main-
taining processes in a desired state (see [3], [25], [10]). Control algorithms are embedded in
control systems. Sometimes control systems are applied to control critical systems, whichrequire
free errors designs and because of one of the part of control systems is software, recently control
engineers are applying software processes in the building of control algorithms [18].

Proposal of the paper : Usually a design covers one view of the system being modeled. Ac-
cording with [7], the design views of system are: structural, procedural and behavior. While
making the design’s structural view, the designer should document constraints affecting system
entities and the relations between them [7]. This documentation can be made using text or a
formal language to get a more precise specification. In this paper, the author explains how a semi
formal modeling language and a formal language can be used to specify constraints affecting the
parts of an adaptive control system as well as constraints affecting the relations between them.
The Unified Modeling Language (UML) [5], [14] and the Object Constraint Language (OCL)
will be used to specify these constraints.

Previous works : The first step in a software process is to gather requirements system. In [17] a
requirements process for control system software is presented. This process is based mainly in

Copyright © 2006-2014 by CCC Publications



218 F. Valles-Barajas

the Rational Unified Process (RUP).
As is recommended in Personal Software Process (PSP) [7], once the requirements are captured
by software engineers, the next step is to make a pre-design for the purpose of prediction and
planning. In [19] a proposal for the building of pre-design for control systems is presented.
Further details, not covered in the pre-design, can be specified in the design phase. PSP pro-
poses that design can be analyzed from several perspectives. In [20] a proposal, based on PSP,
for modeling the structural view of control systems is introduced; in this view the entities of the
system, its attributes and relations among the system entities are modeled. Once the entities
of system are specified, software designer should detect entities having several states and model
them using a state machine. In [21] the authors model an adaptive control system using a state
machine.
The design views proposed in PSP are a subset of the UML diagrams, which model systems
in more detail. In [23] a survey of the application of UML to model mechatronics systems is
presented.
Once software design is made, code must be built. In [18] and in [22] the authors explain best
practices in using programming languages at the moment code for control system software is
made.

Related works: The Z language is a formal modeling language based on first-order logic and
set theory. This modeling language has been applied to the specification of critical systems.
In [8], this language is used to specify a control program for a radiation therapy machine.
Another application of the Z modeling language in critical systems is described in [15], where a
system that monitors the blood glucose level of diabetics and automatically injects insulin when
it is required is specified in the Z language.
The disadvantage of the Z language in comparison with OCL, which is the modeling language
used in this paper, is that OCL complements UML and it does not use mathematical symbols to
make specifications. The latter characteristic could be attractive to control engineers not familiar
with mathematical logic.

Control systems are usually modeled using differential equations and analyzed using, for ex-
ample, Lyapunov stability theory. In [2] a novel approach based on Hoare logic for reasoning
about control systems is presented.
In [12] the authors present intent-specifications model for a robotic software control system. Ac-
cording to the authors, an intent-specification is composed of seven levels that as a whole model
the entire software control system. Each level models the system from a different perspective
and, in particular, in level 4 a design representation of the system is included.
The Unified Modeling Language (UML) has also been used to model software for control systems.
In [24] the authors propose a methodology for generating code for Programmable Logic Con-
trollers (PLCs) from UML diagrams. The application of UML for process control was evaluated
from a usability and cognitive science point of view. The authors performed an experiment to
evaluate the acceptation of UML for control engineers.
Some researchers are studying mapping between traditional tools used by control engineers for
software modeling and UML. For example, in [16] the author analyzed mapping between func-
tion blocks, which are defined by the International Electro-technical Commission as the basic
construct for distributed control applications and UML. When compared with UML, function
blocks do not consider all the benefits of object oriented theory. Another paper including func-
tional blocks and UML is [13]; in that paper the authors apply UML activity diagrams to model
function blocks.
Theorem provers have also been used to specify and verify the correctness of control software.
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For example, in [6] the authors apply the interactive theorem prover PVS to model the Light
Control System, which is a benchmark in formal methods.

Outline of the paper : In this section, the motivation of this work has been explained. Sec-
tion 2 contains a brief description of an adaptive control system. Section 3 describes the tools
used in this paper to specify the constraints of an adaptive control system. In section 4 the
adaptive control system design is included. The last section contains concluding remarks.

2 Adaptive Control Systems

Fig. 1 shows the configuration of an indirect adaptive control system. In this kind of adaptive
control, a model of the process (Gp(z−1)) is obtained based on a set of input-output measure-
ments (u(k), y(k)) and then the controller (Gc(z−1)) is designed using this model [10]. The
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Figure 1: Block diagram for an Adaptive Control System

parameter adaptation algorithm (PAA) block is the responsible for obtaining the parameter vec-
tor of the process (see θ̂PAA(k)) in fig. 1). The controller design block specifies the parameters of
the controller (θ̂CD(k)) based on the model obtained by the PAA and on the desired performance
specified by the system operator.
An adaptive control system must control a process in spite of disturbances d1(k), d2(k), noise
n(k) and the parametric variations of the process. The supervisor block is in charge of detecting
any event that may provoke a decreasing in the performance of system; in these cases the super-
visor will turn off the controller Gc

In fig. 1, yref (k) is the reference, e(k) is the control error, u(k) is the manipulated variable and
k is the kth sampling time.

3 UML & OCL: tools to model software systems

UML is a modeling language, based on object oriented theory, developed by the three amigos
with the aim of modeling complex software [14]. Every of the UML diagrams models a different
view of a system; for example class diagrams specify system entities and the relations between
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Figure 2: Class diagram for an Adaptive Control System

them. UML has acquired a good acceptation in the software community, though sometimes
models created in UML lead to miscommunication.
In these cases it is recommended to complement UML models with an OCL specification, which is
a formal modeling language based on logic and set theory. One of the advantages of OCL is that it
does not use mathematical symbols to build models; instead it uses a textual representation. For
designers without strong background in logic, this characteristic of OCL may result attractive.

4 UML/OCL specification for an Adaptive Control System

In this section the Adaptive Control System metamodel is presented. First of all, a graphical
model is described using UML and as will be shown this model contains weak constraints on
the elements composing an Adaptive Control System. With the introduction of the UML model
the disadvantages of only using graphical models to specify an Adaptive Control System are
demonstrated.
A model complementing the graphical model is then constructed using OCL. As the reader will
see the weak constraints established in the UML model will be strengthened by using OCL.

4.1 UML specification

Fig. 2 contains a UML class diagram for the ACS of fig. 1. For simplicity, this diagram does
not contain all of the details of an ACS; for example, the supervision block and the controller
design block are not considered in this diagram. Fig. 3 and 4 contain the USE specification of
the class diagram of fig. 2.

As the reader may notice a composition relation between classes Gp (process model), Gc (con-
troller) and PAA (Parameter Adaptation Algorithm) was specified (see the composition ACS in
the class diagram of fig. 2 and its definition in the USE specification of fig. 4).
Also, an association class between classes Gp and Gc was defined. As can be seen in the USE
specification of fig. 4, this class was defined as an association class because it defines attributes
that do not belong to a particular class; for example Ts (time sampling) is associated to the
entire system and not to a particular class.
A reflexive relation, named cascade, was defined in the class Gc. Master and slave roles of this
relation are specified in fig. 4.
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model AdaptiveControlSystem

enum ExternalAgent {d1, d2, n}
enum PAA_State {on, off}
enum PAA_Fault {poorExcitation, perturbation, lowM}
enum Tuning {quarterDecayRatio, stepResponse,

IAE, ITAE, other}

abstract class Gc
attributes

id : Integer
isInAutomatic: Boolean
R: Sequence(Real)
S: Sequence(Real)
T: Sequence(Real)
tuningType: Tuning
indicator : String

constraints
inv updateDisplay:

isInAutomatic implies indicator = ’automatic’
inv ValidId:

id >= 1
end

class PAA
attributes

theta: Set(Real)
phi: Set(Real)
lambda: Real
state : PAA_State
faults : Set(PAA_Fault)

operations
updateGp( B: Sequence(Real), A: Sequence(Real) )

constraints
inv:
if faults−>notEmpty then state = #off
else state = #on
endif

end

class PID < Gc
attributes

tao_d: Real
tao_i: Real
Kc: Real

operations
assignGp(gp: Gp)

end

abstract class Gp
attributes

B: Sequence(Real)
A: Sequence(Real)
d: Integer
na: Integer
nb: Integer
np: NyquistPlot

operations
isMonicHurwitzPolynomial (): Boolean

constraints
inv sructure3:

d>0 and na>0 and nb>0
inv structure:

na >= nb
inv structure2:

A−>size() = na and B−>size() = nb
end

class FOP < Gp
attributes

K: Real
theta: Real
tao: Real

operations
initGpFOP()
fromContinousToDiscrete()

constraints
inv structure:

nb = 1 and na = 2
end

class SOP < Gp
constraints

inv structure:
nb = 2 and na = 3

end

Figure 3: USE specification for an Adaptive Control System (part I)
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class Process
attributes

identifiedGp: Gp
affected : Set(ExternalAgent)

end

class Frequency
attributes

value: Real
end

associationclass GpGc between
Gp [1] role model2;
Gc [1] role controller ;

attributes
Ts: Integer
affectedBy: Set(ExternalAgent)
faultHistory : Bag(ExternalAgent)
gainMargin: Real
phaseMargin: Real
modulusMargin: Real
delayMargin: Real

operations
registerAFault(f : ExternalAgent)

end

association tune between
PAA [1] role tunner;
Gc [1] role controller2 ;

end

association corresponds between
Frequency [1]
ComplexNumber [1]

end

class ComplexNumber
end

class CriticalPoint < ComplexNumber
end

class NyquistPlot
attributes

w: Sequence(Frequency)
c: Set(ComplexNumber)

end

association cascade between
Gc [0..1] role master;
Gc [0..1] role slave ;

end

association validZone between
Process [1] role plant;
Gp [1..∗] role Model;

end

association identifies between
PAA [1] role identifier ;
Process [1] role process;

end

composition ACP between
PAA [1]
Gp [1]
Gc [1]

end

Figure 4: USE specification for an Adaptive Control System (part II)

The model defined in fig. 2, 3 and 4 contain some flaws; for example this model allows that
a controller Gc1 plays at the same time master and slave role in the cascade association.
Another design flaw occurs between classes Gc and Gp as is explained as follows. PID controllers
have demonstrated to have a good performance when the process being controlled can be mod-
eled as a first or second order process (see [11]), however the class diagram of fig. 2 allows that
any kind of process may participate in the relation between Gc and Gp.
These design flaws justify the addition of OCL constraints to the ACS class diagram model shown
in fig. 2 and defined in fig. 3 and 4.

4.2 OCL specification

In this section, invariants on the class diagram defined in fig. 2 are defined. Some invariants
affect more than two elements of the class diagram. Invariants are explained in the same order
they appear in fig. 5 and 6.

Fig. 5 defines three constraints on the class controller, Gc. Invariant onlyOneRole assures
that a controller Gc1 cannot be at the same time, both a master controller and a slave controller.
Invariant differentIDs constraints that in a cascade relation the controller playing the master
role has a different id that the controller playing the slave role.
The last invariant of the class Gc specifies that if the type of controller is a PID controller, then
an appropriate tuning type must be selected (quarterDecayRatio, stepResponse, IAE or ITAE
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context Gc
inv onlyOneRole:

master−>notEmpty implies slave−>isEmpty

inv differentIDs :
(master−>notEmpty implies self.id <> master.id) and (slave−>notEmpty implies self.id <> slave.id)

inv validGp:
self .oclIsTypeOf( PID ) implies

tuningType <> #other and (model2.oclIsTypeOf( FOP ) or model2.oclIsTypeOf( SOP ))
and model2.oclIsTypeOf( FOP ) implies model2.oclAsType( FOP ).theta < gpGc.Ts

context PID::assignGp( gp: Gp )
pre: FOP.allInstances−>union( SOP.allInstances )−>includes( gp )
post: model2.plant.identifiedGp = gp

context NyquistPlot
inv orderedFreq1:

let integers = Sequence{1 .. w−>size()} in
integers−>forAll(e1, e2: Integer | w−>at(e2).value > w−>at(e1).value implies e2 > e1)

inv orderedFreq2: −− another way to specify invariant orderedFreq1
w−>forAll(f1, f2: Frequency | w−>indexOf(f2) > w−>indexOf(f1) implies f2.value > f1.value)

inv stability :
w−>forAll(f: Frequency | CriticalPoint.allInstances−>excludes(f.complexNumber))

inv completeness:
w−>forAll(f: Frequency | ComplexNumber.allInstances−>exists(cn | f.complexNumber=(cn)))

Figure 5: USE constraints for an Adaptive Control System (part I)

among others, see the enumeration Tuning defined in fig. 3). Besides this, the process being
controlled should be modeled as a first order process or as a second order process. If the process
is a first order process then the dead time, θ, should be smaller than Ts.

A method to assign a process model to a PID controller is defined in fig. 5. This method
forces that the model, Gp, should be either a first order process or a second order process.

Four invariants are defined on the class NyquistPlot. Invariants orderedFreq1 and orderedFreq2
declares that the frequencies specified in a Nyquist plot should be ordered from low to high.
Invariant stability defines that a Nyquist plot should not contain the critical point.
The last invariant of class NyquistPlot specifies that every frequency in a Nyquist plot has a
complex number assigned to it.

Fig. 6 declares a method of the class Gp, which constraints that the polynomial A of Gp should
be monic; in other words the leading coefficient should be 1.

The method updateGp defined on the class PAA, updates the model Gp as long as the model
identified by the PAA is inside the valid zone of the process being controlled and there is not
fault affecting the entire system.

Invariant stabilityCriteria defines the standard values to get a robust controller recommended
in [3]. Method registerAFault defined on the association class GpGc updates the logging of sys-
tem faults.
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context Gp :: isMonicHurwitzPolynomial(): Boolean
pre: A−>first() = 1.0
post: result = true

context PAA::updateGp( B: Sequence(Real), A: Sequence(Real) )
pre: state = #on
pre: process.Model−>exists(gp: Gp | gp.A = A and gp.B = B)
pre: Set{faults, process.Model.gpGc.affectedBy}−>isEmpty

post: process.identifiedGp.A = A and process.identifiedGp.B = B

context GpGc
inv stabilityCriteria :

gainMargin >= 6 and modulusMargin >= −6
and Sequence{ 30, 31 .. 59, 60 }−>includes(phaseMargin) and delayMargin = 0.1∗Ts

context GpGc::registerAFault(f : ExternalAgent)
post: faultHistory = faultHistory@pre−>including(f)

context Process
inv not_a_PID:
let ip = identifiedGp in let fop = ip.oclAsType( FOP ) in

ip .oclIsTypeOf( FOP ) and (fop.theta > fop.tao∗0.25 and fop.theta < ip.gpGc.Ts) implies
PID.allInstances−>excludes( ip.controller )

Figure 6: USE constraints for an Adaptive Control System (part II)

The last invariant of fig. 6 constrains the class Process. If the process is modeled as a first
order process then θ should be less than 0.25τ (τ is the constant time of a first order process)
and less than Ts.

5 Conclusions

In this paper an informal modeling language (UML) and a formal modeling language (OCL)
have been applied to model an adaptive control system. UML was used to specify weak con-
straints whereas OCL was applied to strength the model made in UML.
The author of this paper believes that the model included in this work, will be useful for control
engineers that want to have a better understanding of how to apply UML and OCL in the mod-
eling of control systems.
A simple example (an Adaptive Control System) was used in this paper to illustrate how control
system software can be specified using an informal notation (UML) together with a formal mod-
eling language (OCL). The technique proposed in this paper should be used to model software
for complex control systems, e.g. nuclear plants, robots, planes among others.

The future lines of research based on this paper are:

• Due to the fact that UML is a general purpose modeling language, in some cases a more
specialized language gives a more precise specification than that obtained using UML. This
drawback of UML has been studied and analyzed by the UML community and to overcome
this problem UML extension mechanisms have been proposed; one of these are profiles. A
profile based on UML and OCL will be studied in future papers.

• There are some tools to prove if some constraints are fulfilled by one specification (see for
example [1] and [4], among others). Building one tool with this characteristic would be
useful to check the models created by the technique proposed in this paper.



A Metamodel for an Adaptive Control System 225

• Every modeling technique specifies a system from a particular perspective. In this paper,
a UML class diagram was used to model the entities composing a control system along
with the constraints among them; strong constraints were specified using OCL. Other
perspectives not considered in this paper could model the interaction between the entities
composing the system and the interaction between the user of a system and the system
itself. A study of other models complementing the perspectives of control system software
will be made in a future research.
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