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Fuzzy and Neural Controllers for a Pneumatic Actuator
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Abstract: There is a great diversity of ways to use fuzzy inference in robot con-
trol systems, either in the place where it is applied in the control scheme or in the
form or type of inference algorithms used. On the other hand, artificial neural net-
works ability to simulate nonlinear systems is used in different researches in order to
develop automated control systems of industrial processes. In these applications of
neural networks, there are two important steps: system identification (development
of neural process model) and development of control (definition of neural control
structure). In this paper we present some modelling applications, which uses fuzzy
and neural controllers, developed on a pneumatic actuator containing a force and a
position sensor, which can be used for robotic grinding operations. Following the
simulation one of the algorithms was tested on an experimental setup. The paper also
presents the development of a NARMA-L2 neural controller for a pneumatic actua-
tor using position feedback. The structure had been trained and validated, obtaining
good results.
Keywords: fuzzy control, neural control, force-position feedback, pneumatic actua-
tor.

1 Introduction

There is a great diversity in which fuzzy inference and neural networks can be used in robotics
operation control either in the place it has in the control scheme or in the type of fuzzy or neural controller.
From the studied references the conclusion can be drawn that fuzzy inference is used (among others) in
trajectory generation [3], robot model design [2], instead of P.I.D. controllers [4] or in combination with
these [6]. A detailed presentation of general purpose fuzzy controllers is given in [5]. In the same
work, it is shown that there can be made fuzzy controllers similar to classical ones (quasi - P.I.D.). In
other researches the importance of parameter adjustment is emphasized and also that fuzzy controllers
can be adjusted more easily [6]. Due to the fact that a large part of fuzzy inference systems had been
implemented on heuristic basis (usually the membership functions are chosen upon the educated guess of
specialists) there is no guarantee of a reliable operation or stability of the system in unforeseen conditions.
Due to this, experimental tests must be considered. A great number of researches in this field have as
goal the development of methodologies of synthesis and analysis of fuzzy inference systems, in the field
of robotics [2], [4] or in the larger field of control systems [5] (i.e. study of stability of fuzzy controllers).

Also there are works regarding the elaboration of fuzzy models of robots (used in direct and inverse
kinematics [3] or in inverse dynamics [1], which can replace analytical models, and shorten the comput-
ing times. Many researches try a systematic approach of fuzzy systems design (development of a design
methodology), which can eliminate the subjectivity in choosing the membership functions and rule sets,
as in [2], in which a clear method is presented for a rigorous selection of fuzzy inference parameters.

In order to develop a model and test fuzzy and neural control in the design phase an adequate pro-
gramming environment must be selected. For this purpose we had chosen the MATLAB programming
environment, because it offers predefined functions to develop fuzzy and neural control systems. These
functions are linked to extern modules like the "inference system" and the "fuzzy engine", and the
SIMULINK module can also use these functions. User applications can be linked to these modules
using the predefined functions.

The typical base structure of fuzzy systems develop a model which make the correspondence:
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• crisp value - input membership functions - inference rules -

• output characteristics - output membership functions - crisp output value.

Also, a typical fuzzy inference system, supposes a user defined set of parameters which try to en-
crypt the model’s variables characteristics. If instead the development of a process model is wanted
for which certain experimental input-output data sets exists, the fuzzy system parameters can be auto-
matically generated that is the system identification can be done. In this case the identification strategy
can be a neural-fuzzy approach, which has at its base acquiring knowledge from the presented data set
in order to generate membership function parameters. In the MATLAB environment the adjustment of
these parameters can be done with a module which works similar to a neural network named ANFIS
(Adaptive Neural Fuzzy Inference System). As teaching algorithm error back propagation is used and
the optimization is made by a gradient method, followed by error minimization (by the quadratic sum
method).

In [10], a methodology is presented for designing an adaptive fuzzy logic controller. "The neuro-
fuzzy controller is first trained using data from an approximate analytical model of a cellular network then
the controller is fine tuned and adapted to the unique cell dwell time and call holding time distributions
of a particular cell in the network".

The ability of neural networks to simulate non-linear systems, is used in some researches [13], in
order to develop industrial processes control systems. When using neural networks in controlling pro-
cesses there have to be two steps: system identification (development of process neural model) and
control design (development of neural control system).

In the system identification step, the neural model of the controlled process is developed and in
the second step this model is used to obtain the neural net that will control the process. The training
of process neural model is made "offline" (or "batch processing"), but the training and optimization of
neural control must be made "online" using training data sets.

A chaos search immune algorithm is proposed in [12] by integrating the chaos optimization algo-
rithm and the clonal selection algorithm: "first, optimization variables are expressed by chaotic variables
through solution space transformation. Then, taking advantages of the ergodic and stochastic properties
of chaotic variables, a chaos search is performed in the neighborhoods of high affinity antibodies to ex-
ploit local solution space, and the motion of the chaotic variables in their ergodic space is used to explore
the whole solution space. Furthermore, a generalized radial basis function neuro-fuzzy controller [...] is
constructed and designed automatically".

2 Simulation of pneumatic system with fuzzy controller

2.1 General considerations

The general scheme of the automated grinding system is presented in figure 1. This system is used
to grind metal probes for microscope observations.

The "Command module" represents a programmable computing unit on which the control algorithm
is running (fuzzy or neural controller - in this case a Pentium IV PC) and it has the possibility to transmit
signals to the execution unit and to receive data from sensors (by means of a DAQ card with analogical
and digital channels).

The "Execution module" contains the execution elements, which are simple and proportional electro
- valves, "Force sensor" and "Position sensor" - are the sensor used to generate the feedback signals.

The pneumatic setup of the force-position feedback system (FPFS) is shown in figure 3. For the
position feedback (PFS) system the force sensor is missing.

In the position feedback case the system has to move the probe, approaching the grinding surface to
an approximate distance, and then to move it with smaller speed to touch the surface.
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Figure 1: Scheme of automated metal probe grinding system

In the force - position feedback case the system has to fulfil the objectives represented in diagram
presented in figure 2, that is to move the probe near the grinding wheel surface and then to move it with
reduced speed until the force reaches a reference value and then again to maintain the probe pushed
on the surface with the reference force. Above described strategies can be graphically expressed in the
diagram shown in figure 3.

Figure 2: Scheme of pneumatic setup

For the fuzzy FPFS case (the complete case) there have to be defined:

• two input linguistic variables "Position error" and "Forces error" and one output linguistic variable
named "Control value".

• position reference is given by the superior limit of the uncertainty domain D2;

• the final control will be made by the "Force" variable;

• for position there are two ranges which must be defined (Big and Small) and for the force seven
ranges (Big negative, Medium negative, Small negative, Zero, Big positive, Medium positive,
Small positive).
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Figure 3: Functional diagrams for position (a) and force (b) control

2.2 Fuzzy position feedback system

The model for fuzzy PFS is presented in figure 4. In this case the system is used without force
reaction. This model has been made only as a preliminary study.

In figure 5 the systems inference diagrams are shown:

• the gaussian input membership functions represents 5 linguistic ranges of the "Position error";

• the output triangular membership functions represent also 5 linguistic ranges of the output variable
"Control value"; deffuzyfication is made by a "centroid" function.

Figure 4: Fuzzy PFS model

Results of simulation is given in figure 6 for some random step reference values. We can observe
how the actual controlled position is following the reference position. The delays are relatively large but
considering that the pneumatic system is acting similar to a damper, this range of delay is acceptable.

2.3 Fuzzy force - position feedback system

The fuzzy FPFS is presented in figure 7.
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Figure 5: Inference diagram of the fuzzy PFS model

Figure 6: Reference (R) and actual (A) signals diagram resulted from system simulation (fuzzy PFS
case)

Figure 7: Fuzzy FPFS model
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For both inputs (as for "Force error" as for "Position error") the membership functions are "gaussian"
type and for output membership function the "triangular" type had been used. Simulation results for step
type references are given in figures 8 and 9.

Analyzing the result diagram we can conclude that the control is working correctly.

Figure 8: Reference and response force values

Figure 9: Reference and response position values

3 Experimental setup for fuzzy FPFS

The experimental study in order to test fuzzy FPFS operation is shown in figure 10. The base idea of
this concept was the use of a PCI6023E DAQ card (from National Instruments), for which there are pre-
defined acquisition functions in the MATLAB "Data Acquisition Toolbox". This fact makes possible the
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use of data acquisition, fuzzy inference engine and command signal generation from the same program.
Even the designed system gives birth to considerable delays in comparison with a true real time system
(which would use xPCTarget modules), it is good enough for testing of controllers accuracy.

Figure 10: Experimental setup scheme

The DAQ card has 8 analogical input channels (ACH1...8) on 12 bits, from which ACH1 and ACH2.
were used.

A major disadvantage of PCI6023 DAQ card is the absence of analog output, which would be used to
command the pressure regulator proportional electro-valve (figure 10). This issue was solved by using 6
out of 8 digital channels of the digital I/O port (DIO in figure 10) and a D/A (digital to analog) converter.
So we can obtain 64 values of pressure for the 6 bits available, which suffice for the experiments. We
cannot use al the 8 cannels of the DIO port because 2 channels must be used to command the 2 on-off
electro-valves used to change the piston’s movement direction.

4 Neural position feedback system

In the case of neural PFS there must be two steps to complete: system identification (development of
process neural model) and control design (development of neural control system) [3].

In the system identification step, the neural model of the controlled process is developed and in the
second step this model is used to obtain the neural net that will control the process.

4.1 Identification step

In the identification step a convenient structure for the process model must be found and then the neu-
ral network will be trained in order to obtain the value of weights, using training data sets. A largely used
standard structure, representative for nonlinear discrete systems is NARMA (Nonlinear AutoRegressive
- Moving Average) [3], given by the relation:

y(k +d) = N[y(k),y(k−1), . . . ,y(k−n+1),u(k),u(k−1), . . . ,u(k−n+1)] (1)

in which: u(k) is the system’s input and y(k) is the output. In order to identify the process, the
network will be trained with the non-linear function N.

4.2 Control step

If the goal of the system is to follow a reference trajectory, y(k + d) = yr(k + d), a non-linear con-
troller will have to be developed:

u(k) = G[y(k),y(k−1), . . . ,y(k−n+1),yr(k +d),u(k−1), . . . ,u(k−m+1)] (2)
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In order to generate the function G, which minimizes the quadratic mean error, a dynamic back-
propagation learning algorithm should be used which is hard to implement and very slow. That is the
reason why some approximate models are usually used.

Such an approximate model is given by relation:

y(k +d) = f [y(k),y(k−1), . . . ,y(k−n+1),u(k−1), . . . ,u(k−m+1)] (3)

+g[y(k),y(k−1), . . . ,y(k−n+1),u(k−1), . . . ,u(k−m+1)] ·u(k)

This model is in a form in which the input u(k) is not contained in the non-linear term and if
y(k +d) = yr(k +d), it can then be written that:

u(k) =
yr(k +d)− f [y(k),y(k−1), . . . ,y(k−n+1),u(k−1), . . . ,u(k−n+1)]

g[y(k),y(k−1), . . . ,y(k−n+1),u(k−1), . . . ,u(k−n+1)]
(4)

In this form it is necessary to find the input values u(k), based on the output in the same step y(k),
which is inconvenient and is better to use the form:

y(k +d) = f [y(k),y(k−1), . . . ,y(k−n+1),u(k),u(k−1), . . . ,u(k−n+1)] (5)

+g[y(k),y(k−1), . . . ,y(k−n+1),u(k), . . . ,u(k−n+1)] ·u(k +1)

for d ≥ 2.
The structure of the process model neural network neural network is given in figure 11.

Figure 11: Process neural model based on relation (5)

The controller expression from relation 5, will be:

u(k +1) =
yr(k +d)− f [y(k), . . . ,y(k−n+1),u(k), . . . ,u(k−n+1)]

g[y(k), . . . ,y(k−n+1),u(k), . . . ,u(k−n+1)]
(6)

for d ≥ 2.
In figure 12 is presented the control scheme in which yr is generated by the neural model ("reference

model").
In this case the controller has to make only a few computations and the neural model can be trained

off-line. The method can be applied in industrial robot control, but it was not tested yet with pneumatic
actuators. The real advantage of using this kind of controllers for industrial robots, would be the use of
parallel system for each axes of the robot.

As support of computational implementation of the simulation the SIMULINK module of MATLAB
was used. SIMULINK, contains predefined blocks to generate the neural model as well a GUI for
parameter settings, training and validation of the controller.
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Figure 12: Control scheme designed on the relation (6)

4.3 Neural position feedback system simulation

For this case a proportional valve and two on-off electro-valves have been used. The pneumatic
design scheme is the same as it was presented in figure 2, only the controller structure is different.

This model is very complex and even if the PC used for simulation (Intel Pentium IV 2GHz), has
a significant computing power training cycles are very long (about hundreds of minutes). That is why
we have used the simplified model of the process shown in figure 13. The simplification is made by
neglecting the air compressibility terms and the elimination of air from cylinders inactive chamber.

Figure 13: Simplified process scheme

The presented model is then integrated with the controller model given the final version shown in
figure 14.

Figure 14: Process with controller scheme
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After model design, the training, validation and test data sets were generated with the help of process
model. On this basis the neural model of process and controller were obtained. The training error as
function of training epochs is presented in figure 15.

A number of 3000 data in 300 epochs were used as training parameters. As it can be seen from the
diagram the convergence of the network is good.

Simulations were carried out for different reference values for position from 0.025 to 0.06. In figure
16 a sample of obtained response is shown for position reference value of 0.042.

Figure 15: Training of the neural network

Figure 16: Reference (R) and actual (A)value of simulation results

5 Results and conclusions

The structure of the NARMA-L2 neural controller for a pneumatic actuator has been trained and
validated, obtaining good results.

After the analysis of simulation results and the experimental system operation it can be said that the
fuzzy controller is working in a proper manner for this application but needs further adjustments in order
to increase the robustness of the control.
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In actual operation there are unwanted effects as:

• position control error is constant, but the actual position remains under the reference value with
about 6% for a value of reference from 6 to 9;

• the uncertainty domain in which the probe can meet the grinding wheel and the domain in which
the control is acceptable is small (about 0.003 m), but in practice this is about 0.005 to 0.006 m;

• the force control error is increasing with the increase of reference, limiting the application domain
in which the error is still acceptable.

Although in some domains the control is acceptable further adjustments of the control parameters
are needed.

In the study of neural controller simulation it resulted that the overshoot error of the system was only
of 3%. In this case further studies must be carried out to implement the neural controller for the FPFS
case and to test it experimentally.
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