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Time Disturbances and Filtering of Sensors Signals
in Tolerant Multi-product Job-shops with Time Constraints
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Abstract: This paper deals with supervision in critical time manufacturing job-
shops without assembling tasks. Such systems have a robustness property to deal
with time disturbances. A filtering mechanism of sensors signals integrating the
robustness values is proposed. It provides the avoidance of control freezing if the
time disturbance is in the robustness intervals. This constitutes an enhancement of
the filtering mechanism since it makes it possible to continue the production in a
degraded mode providing the guarantees of quality and safety. When a symptom
of abnormal functioning is claimed by the filtering mechanism, it is imperative to
localize the time disturbance occurrence. Based upon controlled P-time Petri nets
as a modeling tool, a series of lemmas are quoted in order to build a theory dealing
with the localization problem.
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1 Introduction

This paper concerns critical time manufacturing job-shops. For each operation is associated a time
interval. Its lower bound indicates the minimum time needed to execute the operation. The non respect
of this value means that the operation was not achieved. The upper bound fixes the maximum time to
not exceed otherwise the quality of the product is deteriorated. Such systems have a robustness property
in order to maintain product quality when there are time disturbances [1], [2]. The robustness is defined
as the ability of the system to preserve the specifications facing some expected or unexpected variations.
So the robustness characterizes the capacity to deal with disturbances. The robustness is interpreted
into different specializations. The passive robustness is based upon variations included in validity time
intervals. There is no control loop modification to preserve the required specifications. On the other
hand, active robustness uses observed time disturbances to modify the control loop in order to satisfy
these specifications. Therefore, the robustness intervals must be integrated in the filtering mechanism
of sensors signals. Furthermore, the observability of time disturbances occurrence is a fundamental
data necessary for the control loop modification. It is also an important aspect of the maintaining task
[3], [4]. When an abnormal functioning is claimed, it is important to know the initial occurrence of
the disturbance. The localization problem is really difficult in robust systems since the rejection of
disturbances may hide them [5].

The first part of this paper presents a filtering mechanism of sensors signals taking into account the
robustness values. The second part considers the localization of time disturbances. It is necessary to
perform this task when the disturbance value passes through the filter. Controlled P-time Petri nets are
used for modeling the considered workshops. Afterward, the localization problem of time disturbances
in critical time manufacturing systems is tackled. Some definitions and lemmas are quoted in order to
build a theory dealing with such problems.

2 Robustness integration in the filtering of sensors signals

At the occurrence of a dysfunction in a manufacturing workshop, it is crucial to react as soon as
possible to maintain the productivity and to ensure the safety of the system. It has been recognized that
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the real time piloting, without human intervention, has a significant contribution regarding this type of
problem [6], [7].

In the category of the workshops concerned by this article, the operations have temporal constraints
which must be imperatively respected. The violation of these constraints can blame the health of the con-
sumers. Thus, the detection of a constraint violation must automatically cause the stop of the production.
On the other hand, when taking into account the system robustness, it is proven that this type of violation
did not take place. In this case, we plan to maintain the production while describing it as degraded pro-
duction [8]. Of course, the product is not degraded, but the production is degraded because the deliveries
moments of the products are not those envisaged initially. It is this context which we propose to integrate
in the generation of symptoms as it was presented in [9].

The finality of this section is not to contribute to the state of the art of the monitoring-diagnosis, but
to show how the knowledge of the robustness could make the supervision more efficient. By considering
this criterion, the filtering of sensors signals of [9] appears pedagogically interesting.

2.1 Symptoms generation

The idea consists in modeling any operation from a temporal approach. At each operationAi is asso-
ciated a sensor signalCRi . At each sensor signalCRi is associated a temporal window[∆tm/CRi

, ∆tM/CRi
]

(Figure 1).CRi is valid only inside this window.∆tm/CRi
and∆tM/CRi

are defined relatively to the begin-
ning of the operationAi (Start-Event). The filtering principle is to position the temporal window of each
sensor signalCRi when his Start-Vent was received. Two types of symptoms are distinguished [9].

Symptoms type I notedS1
i : this class of symptoms corresponds to awaited sensor signal which is

not received at∆tM/CRi
. The detection mechanism of this symptom type corresponds to the traditional

mechanism of watchdog, but implemented in a separate way of the control. Symptoms type II notedS2
i :

it is generated by the occurrence of a sensor signal which is not expected. Two cases are considered. The
first one corresponds to an action but its sensor signal occurs before the validation interval. The second
case corresponds to the occurrence of a sensor signal in absence of any order which can create it.

 

Ai 

(Start-Event) 

∆tM/CRi 

Validation interval of CRi 

Time 0 

∆tm/CRi 

Figure 1: Operation associated model [9]

2.2 Robustness integration

The tool used to represent the filtering mechanism is the interpreted T-time Petri net. Initially, we
point out the definition of the interpreted T-time Petri net. After, we give the filtering mechanism of
sensors signals integrating the two properties of passive and active robustness.

Definition 1. A T-time Petri net is given by a pair< R; IS′ >, whereR is a Petri net andIS′ : T →
(Q+)× (Q+∪+∞) [10].
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Definition 2. Interpreted T-time Petri net is a T-time Petri net including an operative part whose state
is defined by a set of variables. This state is modified by the operations associated to the places. It
determines the value of the conditions (predicates) which are associated to the transitions.

The mechanism of watchdog is easily represented by an interpreted T-time Petri net. For example, figure
2 shows the detection of a normal state and an abnormal one. If the sensor signal arrives in[tm, tM[, the
system is in a normal state. If the sensor signal arrives at the instanttM, the system is in an abnormal one.

 
p2 

t1 

p1 

t2 

p3 

[tm, tM[*CRi 

[tM, tM]*CRi 

Normal state  

Abnormal state 

Figure 2: Watchdog mechanism with interpreted T-time Petri net

Within the framework of the robustness integration in the supervision of manufacturing systems with
time constraints, we define, figure 3, five time intervals namely:
I1i = [∆tm′′/CRi

, ∆tm′/CRi
[, I2i = [∆tm′/CRi

, ∆tm/CRi
[, I3i = [∆tm/CRi

, ∆tM/CRi
[, I4i = [∆tM/CRi

, ∆tM′/CRi
[ and

I5i = [∆tM′/CRi
, ∆tM′′/CRi

[.
The margin of passive robustness is available in(I2i ∪ I4i) whereas the margin of active robustness is

in (I1i ∪ I5i). From a functional point of view, there are three intervals of use in which it is possible to
prove the validity: interval of normal functioning, interval of passive robustness and interval of active ro-
bustness. In the case of an abnormal functioning, there is always duality of advance and delay scenarios.

The adopted filtering mechanism is described by the interpreted T-time Petri net of the figure 4.
Several cases can arise [11].

• If there are absence of order (notAi) and presence ofCRi , there are freezing of the control and
generation of a symptomS2

i (placep3).

• If the sensor signalCRi arrives in the time interval[0, ∆tm′′/CRi [, there are freezing of the control
and generation of a symptomS2

i (placep3).

• If the sensor signalCRi arrives in the time intervalI1i = [∆tm′′/CRi
, ∆tm′/CRi

[, there are change of
the control (active robustness to an advance) and memorizing a symptomS2

i (placep4).

• If the sensor signalCRi arrives in the time intervalI2i = [∆tm′/CRi
, ∆tm/CRi

[, there is no change of
the control (passive robustness to an advance) but only a memorizing of a symptomS2

i (placep5).

• If the sensor signalCRi arrives in the time intervalI3i = [∆tm/CRi
, ∆tM/CRi

[, the behavior of the
system is normal (placep6).
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Figure 3: Robustness integration in the operation associated model

• At the instant∆tM/CRi
(transitiont7), there is automatically memorizing of a symptomS1

i (place
p7).

• If the sensor signalCRi arrives in the time intervalI4i = [∆tM/CRi
, ∆tM′/CRi

[, it is a case of passive
robustness to a delay (placep8). The symptomS1

i is already memorized (placep7).

• If the sensor signalCRi arrives in the time intervalI5i = [∆tM′/CRi
, ∆tM′′/CRi

[, a change of the control
is necessary (active robustness to a delay, placep9).

• At the instant∆tM′′/CRi
(transitiont10), there is freezing of the control (placep10).

3 Localization of time disturbances in a given topology

When, for example, the filtering mechanism executes a control freezing, it is necessary to know
where the initial disturbance was occurred. This task is performed on a model of the workshop which
uses P-time Petri net in order to integrate the staying time constraints in its structure. This aspect is
presented in the following section.

3.1 Controlled P-time Petri net

The formal definition of a P-time Petri net is given by a pair< R; IS>, where [12]:

• R is a marked Petri net,

• IS : P→ (Q+∪0)× (Q+∪+∞)
pi → ISi = [ai , bi ] with 0≤ ai ≤ bi .

ISi defines the static interval of staying time of a mark in the placepi belonging to the set of placesP
(Q+ is the set of positive rational numbers). A mark in the placepi is taken into account in transition
validation when it has stayed inpi at least a durationai and no longer thanbi . After the durationbi the
token will be dead.

Using [15], controlled P-time Petri net is defined as a quadrupletRpc= (Rp, ϕ, U , U0) such that:

• Rp is a P-time Petri net which describes the opened loop system,
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Figure 4: Robustness integration in the filtering mechanism of sensors signals
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• ϕ is an application from the set of places(P) toward the set of operations(Γ): ϕ : P→ Γ,

• U is the external control of the set of transitions(T) built on the predicates using the occurrence
of internal or external observable events of the system:U : T →{0,1},

• U0 is the initial value of the predicate vector.

Let us denote by:

• TO : the set of observable transitions,

• TUO : the set of non observable transitions,

• TS : the set of synchronization transitions,

• TNS : the set of non synchronization transitions,

• TP : the set of parallelism transitions,

• t◦i (resp. ◦ti) : the output (resp. the input) places of the transitionti ,

• p◦i (resp. ◦pi) : the output (resp. the input) transitions of the placepi ,

• qie : the expected sojourn time of the token in the placepi ,

• Ste(n) : thennd expected firing instant of the transitiont,

• St(n) : thennd effective firing instant of the transitiont.

3.2 Functional decomposition

A workshop in repetitive functioning mode is modeled by a Strongly Connected Event Graph (SCEG)
[13]. Performances of a SCEG running in mono-periodic functioning mode are proved to be the same
as when using the K-periodic functioning [13]. Consequently, a mono-periodic functioning is used in
order to decrease the complexity of the supervisory problem [14]. In this case, for each transition t,
Ste(n+ 1) = Ste(n)+ π0 whereπ0 is the period of the periodic functioning of the given discrete event
system. In this paper, the scheduling task is supposed to be done. Therefore, the SCEG corresponding to
the system is provided. Moreover, the setting of transitions firing instants is fixed too.

As the sojourn times in places have not the same functional signification when they are included in
the sequential process of a product or when they are associated to a free resource, a decomposition of
the P-time Petri net model into four sets is made using [15]. The assumption of multi-product job-shops
without assembling tasks as it was established in [16] is used:

• RU is the set of places representing the used machines,

• RN corresponds to the set of places representing the free machines which are shared between
manufacturing circuits,

• TransC is the set of places representing the loaded transport resources,

• TransNC is the set of places representing the unloaded transport resources (or the interconnected
buffers).
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Figure 5, shows a P-time Petri net(G) modeling a system composed by two sequential processesGO1

andGO2 with two shared machines(M1, M2), where:
RU = {p2, p4, p11, p13, p15}, RN = {p6, p7, p8, p9}, TransC = {p1, p3, p10, p12, p14},
TransNC = {p5, p16}, GO1 = (t12, p10, t6, p11, t7, p12, t8, p13, t9, p14, t10, p15, t11) and GO2 =
(t5, p1, t1, p2, t2, p3,
t3, p4, t4).
The intervals(ISi) and the expected staying times(qie) associated to the places(pi) are:
IS1 = [30, 50], q1e = 38, IS2 = [5, 12], q2e = 7, IS3 = [10, 20], q3e = 15, IS4 = [5, 20], q4e = 10,
IS5 = [1, +∞], q5e = 10, IS6 = [0, +∞], q6e = 5, IS7 = [0, +∞], q7e = 8, IS8 = [8, +∞], q8e = 13,
IS9 = [8, +∞], q9e = 15, IS10 = [5, 15], q10e = 12, IS11 = [15, 20], q11e = 17, IS12 = [3, 7], q12e = 6,
IS13 = [2, 20], q13e = 5, IS14 = [2, 7], q14e = 5, IS15 = [15, 20], q15e = 16, IS16 = [1, +∞] andq16e = 19.
The initial expected firing instants of each transition are:
St1e(1) = 15, St2e(1) = 22, St3e(1) = 37, St4e(1) = 7, St5e(1) = 17, St6e(1) = 12, St7e(1) = 29, St8e(1) =
35, St9e(1) = 0, St10e(1) = 5, St11e(1) = 21andSt12e(1) = 0.
The repetitive functioning mode is characterized by the periodπ0 = 40.

Definition 3. A mono-synchronized subpath is a path containing one and only one synchronization
transition which is its last node.

Definition 4. An elementary mono-synchronized subpath is a mono-synchronized subpath beginning
with a placep such as◦p is a synchronization transition.

In figure 5, there are eight elementary mono-synchronized subpaths constituting a partition ofG:
Lp1 = (p13, t9, p14, t10, p15, t11, p16, t12, p10, t6), Lp2 = (p13, t9, p9, t1), Lp3 = (p2, t2, p3, t3),
Lp4 = (p2, t2, p8, t8), Lp5 = (p4, t4, p5, t5, p1, t1), Lp6 = (p4, t4, p6, t6), Lp7 = (p11, t7, p7, t3) and
Lp8 = (p11, t7, p12, t8).

Property1. A place pmp belonging to a sequential process represents a shared machine if and only if
p◦mp∈ TP or ◦pmp∈ TS.

Property2. The first node of an elementary mono-synchronized subpath is a place belonging toRU and
representing a shared machine.

3.3 Time disturbances localization

Let us remember some definitions.

Definition 5. A time disturbance is detectable if, when it occurs, there exists at least one transitiont ∈ TO

such asSt(n) 6= Ste(n).

Definition 6. A time disturbance is quantifiable if its value can be analytically known.

Definition 7. A time disturbance is localizable when its occurrence node can be identified.

Definition 8. A time disturbance is partially localizable when its occurrence node location can be proved
to belong to a given subset ofP.

Definition 9. A time disturbance is observable when it is detectable, quantifiable and localizable.

Definition 10. The time passive rejection capacity interval of a pathLp is RC(Lp) = [Ca(Lp), Cr(Lp)]
where:

Ca(Lp) = ∑
pi∈(Lp∩ (RN∪TransNC))

(qie−bi), (1)
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Figure 5: An Hillion like model with functional decomposition
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Cr(Lp) = ∑
pi∈(Lp∩ (RN∪TransNC))

(qie−ai). (2)

Ca(Lp) (resp. Cr(Lp)) is called the time passive rejection capacity for an advance (resp. a delay) time
disturbance occurrence.

Definition 11. Let δ a time disturbance and SN a set of nodes belonging to a P-time Petri net.
δ ∈ SN(resp.δ /∈ SN) means that the occurrence ofδ is (resp. is not) in a node of SN.

Used notations:

• Cse is the set of elementary mono-synchronized subpaths.

• IN(Lp) is the first node of the pathLp.

• OUT(Lp) is the last node of the pathLp.

• Lp(t∗, t) is the oriented subpath ofLp beginning witht∗ and ending witht.

• Mn−1(Lp(t∗, t)) is the number of tokens inLp(t∗, t) after the completion of the cycle(n−1).

• Given a time disturbanceδ , δ rt(n) is the resulting residue quantified at the transitiont which is
fired atSt(n).

• EC(IN◦(Lp), t) is the set of oriented paths connecting the nodeIN◦(Lp) of the pathLp to the
transitiont.

• H(IN◦(Lp), t) = min
Li∈[EC(IN◦(Lp),t)\Lp(IN◦(Lp),t)]

(Cr(Li)) + δ rt(n).

• H ′(IN◦(Lp), t) = min
Li∈EC(IN◦(Lp),t)

(Cr(Li)) + δ rt(n).

Lemma 12. LetLp∈Cse, t ∈ (Lp∩TO∩TNS), t∗ ∈ (Lp∩TO) andδ a time disturbance having a residue
δ rt(n) 6= 0 quantified at the transition t. The following results are established [17]:

δ rt∗(n−Mn−1(Lp(t∗, t))) = 0 =⇒ δ ∈ [Lp(t∗, t)\{t∗}], (3)

δ rt∗(n−Mn−1(Lp(t∗, t))) 6= 0 =⇒ δ /∈ [Lp(t∗, t)\{t∗}]. (4)

This lemma discusses the case of two observable transitions,t andt∗, such thatt is not a synchronization
one. When a disturbance is detected at a downstream transitiont and is not detected att∗, it is generated
between these two transitions. Otherwise, the disturbance occurrence is outside the restriction of the
considered path that connectst∗ to t.

Lemma 13. LetLp∈Cse, t ∈ (Lp∩TO), t p∈ (Lp∩TP), ILp = {Li ∈Cse/ OUT(Li) = ◦IN(Lp)} andδ
a time disturbance having a residueδ rt(n) > 0 quantified at the transition t. The following assertion is
true [17]:

δ rt p(n−Mn−1(Lp(t p, t))) < H ′(t p, t) =⇒

δ /∈
{

⋃

Li∈ILp

{
Li \{IN(Li), IN◦(Li)}

}⋃{
◦t p, t p

}}
. (5)
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In other words, when the residue of the disturbance at the parallelism transitiont p does not justify the
residue at the transitiont, forcibly the disturbance has not crossedt p.

Lemma 14. LetLp∈Cse, t ∈ (Lp∩TO∩TS), t∗ ∈ (Lp∩TO) andδ a time disturbance having a residue
δ rt(n) > 0 quantified at the transition t. The following results are established [17]:

δ rt∗(n−Mn−1(Lp(t∗, t))) = 0 =⇒ δ /∈ [Lp(IN◦(Lp), t∗)\{IN◦(Lp)}], (6)

{
0≤Cr(Lp(IN◦(Lp), t∗)) < H(IN◦(Lp), t)
δ rt∗(n−Mn−1(Lp(t∗, t))) = 0

=⇒

{
δ /∈ [(Lp\Lp(t∗, t))∪{t∗}]
δ rIN◦(Lp)(n−Mn−1(Lp(IN◦(Lp), t))) < H(IN◦(Lp), t)

, (7)

{
δ rt∗(n−Mn−1(Lp(t∗, t))) 6= 0
δ rt(n)+Cr(Lp(t∗, t)) 6= δ rt∗(n−Mn−1(Lp(t∗, t))) =⇒

δ /∈ [Lp(IN◦(Lp), t)\{IN◦(Lp)}]. (8)

The above lemma discusses the case of two observable transitions,t andt∗, such thatt is a synchroniza-
tion one. Several results are given.

If the residue at the transitiont∗ is equal to zero, the disturbance does not belong to the restriction of
Lp between its only parallelism transitionIN◦(Lp) andt∗.

If the disturbance has crossed the parallelism transition ofLp (IN◦(Lp)) and if its residue atIN◦(Lp)
is greater than the passive rejection capacity of the restriction ofLp betweenIN◦(Lp) andt∗, the residue
at t∗ must be different of zero. Otherwise, the disturbance has not crossedIN◦(Lp).

If the residue att∗ is different of zero and if it does not justify the residue at the transitiont, the
occurrence of the disturbance is not in the restriction ofLp betweenIN◦(Lp) andt.

Lemma 15. LetLp∈Cse, t p∈ (Lp∩TP∩TUO), t ∈ (Lp∩TO) andCr(Lp(t p, t)) the time passive rejec-
tion capacity ofLp betweent p andt for delay occurrence. Let us callDIF (t p) the set of paths beginning
with t p. Let us denoteDIFn(t p) the restriction ofDIF (t p) such that:∀Lp′ ∈ DIFn(t p), ∀t ′ ∈ Lp′, we
haveSt′(n+mt ′) < St(n) where mt ′ = Mn−1(Lp′(t p, t ′))−Mn−1(Lp(t p, t)).
Now, letLp′ ∈ DIFn(t p), t∗ ∈ (Lp′ ∩TO) andCr(Lp′(t p, t∗)) the passive rejection capacity ofLp′ be-
tweent p andt∗. Given a delay time disturbanceδ , the following results are true [17]:





(t /∈ TS)∧ (δ rt(n) > 0)
δ rt(n)+Cr(Lp(t p, t))−Cr(Lp′(t p, t∗)) > 0
δ rt∗(n+mt∗) = 0

=⇒ δ ∈ [Lp(t p, t)\{t p}], (9)

{
(t /∈ TS)∧ (δ rt(n) > 0)
δ rt∗(n+mt∗) 6= 0

=⇒ δ /∈ [(Lp(t p, t)∪ Lp′(t p, t∗))\{t p}], (10)





(t ∈ TS)∧ (δ rt(n) > 0)
Cr(Lp′(t p, t)) < H ′(t p, t)
δ rt∗(n+mt∗) = 0

=⇒
{

δ /∈ {◦t p, t p}
δ rt p(n−Mn−1(Lp(t p, t))) < H ′(t p, t)

, (11)

{
(t ∈ TS)∧ (δ rt(n) > 0)
δ rt∗(n+mt∗) 6= 0

=⇒ δ /∈ [Lp(t p, t)\{t p}]. (12)
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Whent p is a non observable parallelism transition, the following assertion may be used: if a disturbance
modifies thet p firing instant, it must be seen downstream oft p. Consequently, when the value of
the residual effect of the disturbance is greater than the rejection capacity of a given path, a residual
variation has to be observed.

The different lemmas formulated constitute a tool aiming to define the set of nodes where the disturbance
may occur and the subset where it is proved that it did not occur. Then the question of using the above
lemmas in order to make them collaborate has to be tackled. In other words, it remains to establish an
algorithm using these lemmas while testing all mono-synchronized subpaths of the given P-time Petri
net model.

4 Conclusions

This paper deals with supervision in critical time manufacturing job-shops. In such systems opera-
tion times are included between a minimum and a maximum value. A filtering mechanism of sensors
signals integrating the robustness values is described. It provides the avoidance of control freezing if the
time disturbance is in the robustness intervals. Therefore, it makes it possible to continue the production
in a degraded mode providing the guarantees of quality and safety. It should be noted that the knowledge
of robustness intervals is a significant parameter in the proposed mechanism. The assumptions formu-
lated in these lines are very restrictive. It is natural to consider different scenarios where the temporal
specifications of the process are not fulfilled, nevertheless the production can continue. It is necessary to
introduce a finer classification of abnormal functioning and their impact on the considered systems. In
this context, fuzzy logic can be used.

When a symptom of an abnormal functioning is claimed by the filtering mechanism, it is imperative
to localize the time disturbance occurrence. Based upon controlled P-time Petri nets as a modeling tool,
a series of lemmas are quoted in order to build a theory dealing with localization problem. This is quite
useful for the maintenance task.

In the near future, it is essential to develop an algorithm using the lemmas results and providing
localization of time disturbances.
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