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Abstract:
This paper presents a nonlinear controller for uncertain single-input–single-output
(SISO) nonlinear systems. The adopted approach is based on the feedback lineariza-
tion strategy and enhanced by a fuzzy inference algorithm to cope with modeling
inaccuracies and external disturbances that can arise. The boundedness and conver-
gence properties of the tracking error vector are analytically proven. An application of
the proposed control scheme to a second-order nonlinear system is also presented. The
obtained numerical results demonstrate the improved control system performance.
Keywords: feedback linearization, fuzzy logic, nonlinear control, Van der Pol oscil-
lator.

1 Introduction

Due to its simplicity, feedback linearization scheme is commonly applied in industrial control
systems, specially in the field of industrial robotics. The main idea behind this control method is
the development of a control law that allows the transformation of the original dynamical system
into an equivalent but simpler one [11]. Although feedback linearization represents a very simple
approach, an important handicap is the requirement of a perfectly known dynamical system, in
order to ensure the exponential convergence of the tracking error.

On this basis, much effort has been made to combine feedback linearization with intelligent
algorithms in order to improve the trajectory tracking of uncertain nonlinear systems. The most
common strategies are based on artificial neural networks [2,4,9,10,13] or fuzzy logic [1,3,5,6]. A
drawback of these approaches is that both neural networks or fuzzy logic are used to model the
entire plant, which means that a large computational effort is normally required to characterize
system dynamics.

Considering that the designer of the control system usually has at least some knownledge of
the plant to be controlled, a nonlinear controller is proposed in this paper to compensate for the
uncertainties of single-input-single-output (SISO) nonlinear systems. The adopted approach is
based on the feedback linearization method, but enhanced by a fuzzy inference system to cope
with modeling imprecisions and external disturbances that can arise. This approach requires
a reduced number of fuzzy sets and rules and consequently simplifies the design process. The
boundedness and convergence properties of the closed-loop signals are analytically proven and
numerical simulations are carried out in order to demonstrate the improved performance of the
proposed control scheme.

2 Feedback Linearization

Consider a class of nth-order nonlinear systems:
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x(n) = f(x, t) + b(x, t)u+ d (1)

where u is the control input, the scalar variable x is the output of interest, x(n) is the n-th time
derivative of x, x = [x, ẋ, . . . , x(n−1)] is the system state vector, f, b : Rn → R are both nonlinear
functions and d is assumed to represent all uncertainties and unmodeled dynamics regarding
system dynamics, as well as any external disturbance that can arise.

In respect of the disturbance-like term d, the following assumption will be made:

Assumption 1. The disturbance d is unknown but continuous and bounded, i. e. |d| ≤ δ.

Let us now define an appropriate control law based on conventional feedback linearization
scheme that ensures the tracking of a desired trajectory xd = [xd, ẋd, . . . , x

(n−1)
d ], i. e. the con-

troller should assure that x̃ → 0 as t → ∞, where x̃ = x − xd = [x̃, ˙̃x, . . . , x̃(n−1)] is the related
tracking error.

On this basis, assuming that the state vector x is available to be measured and system
dynamics is perfectly known, i. e. there is no modeling imprecision nor external disturbance
(d = 0) and the functions f and b are well known, with |b(x, t)| > 0, the following control law:

u = b−1(−f + x
(n)
d − k0x̃− k1 ˙̃x− · · · − kn−1x̃

(n−1)) (2)

guarantees that x → xd as t→ ∞, if the coefficients ki (i = 0, 2, . . . , n− 1) make the polynomial
pn + kn−1p

n−1 + · · ·+ k0 a Hurwitz polynomial [11].
The convergence of the closed-loop system could be easily established by substituting the

control law (2) in the nonlinear system (1). The resulting dynamical system could be rewritten
by means of the tracking error:

x̃(n) + kn−1x̃
(n−1) + . . .+ k1 ˙̃x+ k0x̃ = 0 (3)

where the related characteristic polynomial is Hurwitz.
However, since in real-world applications the nonlinear system (1) is often not perfectly

known, the control law (2) based on conventional feedback linearization is not sufficient to ensure
the exponential convergence of the tracking error to zero.

Thus, we propose the adoption of fuzzy inference system within the control law, in order to
compensate for d and to enhance the feedback linearization controller.

3 Fuzzy Inference System

Because of the possibility to express human experience in an algorithmic manner, fuzzy logic
has been largely employed in the last decades to both control and identification of dynamical
systems.

The adopted fuzzy inference system is the zero order TSK (Takagi–Sugeno–Kang), with the
rth rule stated in a linguistic manner as follows:

If x̃ is X̃r, ˙̃x is ˙̃Xr, · · · , and x̃(n−1) is X̃(n−1)
r , then d̂r = D̂r ; r = 1, 2, · · · , N

where X̃r,
˙̃Xr, · · · , and X̃

(n−1)
r are fuzzy sets, whose membership functions could be properly

chosen, and D̂r is the output value of each one of the N fuzzy rules.
Considering that each rule defines a numerical value as output D̂r, the final output d̂ an be

computed by a weighted average:
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d̂(x̃) =

∑N
r=1wr · D̂r∑N

r=1wr

(4)

or, similarly,

d̂(x̃) = D̂TΨ(x̃) (5)

where, D̂ = [D̂1, D̂2, . . . , D̂N ] is the vector containing the attributed values D̂r to each rule
r, Ψ(x̃) = [ψ1, ψ2, . . . , ψN ] is a vector with components ψr(x̃) = wr/

∑N
r=1wr and wr is the

firing strength of each rule, which can be computed from the membership values with any fuzzy
intersection operator (t-norm).

4 Fuzzy Feedback Linearization

Considering that fuzzy logic can perform universal approximation [7], we propose the adoption
of a TSK fuzzy inference system within the feedback linearization controller to compensate for
modeling inaccuracies and consequently enhance the trajectory tracking of uncertain nonlinear
systems.

Therefore, the control law with the fuzzy compensation scheme can be stated as follows

u = b−1[−f + x
(n)
d − k0x̃− k1 ˙̃x− · · · − kn−1x̃

(n−1) − d̂(x̃)] (6)

and the related closed-loop system is:

x̃(n) + kn−1x̃
(n−1) + . . .+ k1 ˙̃x+ k0x̃ = d̃ (7)

with d̃ = d̂− d.
Now, defining kTx̃ = kn−1x̃

(n−1) + . . .+ k1 ˙̃x+ k0x̃, where k = [c0λ
n, c1λ

n−1, . . . , cn−1λ], λ is
a strictly positive constant and ci states for binomial coefficients, i. e.

ci =

(
n

i

)
=

n!

(n− i)! i!
, i = 0, 1, . . . , n− 1 (8)

the convergence of the closed-loop signals to a bounded region is assured.

Theorem 2. Consider the uncertain nonlinear system (1) and Assumption 1, then the fuzzy
feedback linearization controller defined by (5) and (6) ensures the exponential convergence of the
tracking error vector to a closed region Ω = {x ∈ Rn | |x̃(i)| ≤ ζiλ

i−nε, i = 0, 1, . . . , n − 1}, with
ζi defined by (9).

ζi =

{
1 for i = 0

1 +
∑i−1

j=0

(
i
j

)
ζj for i = 1, 2, . . . , n− 1.

(9)

Proof: Considering the universal approximation feature of fuzzy logic [7], the output of the
adopted inference system (5) can approximate the disturbance d to an arbitrary degree of accu-
racy, i. e. |d̂(x̃)− d| ≤ ε for an arbitrary ε > 0. Thus, from (7) one has

|x̃(n) + kn−1x̃
(n−1) + . . .+ k1 ˙̃x+ k0x̃| ≤ ε (10)

From (8), inequality (10) may be rewritten as

−ε ≤ x̃(n) + cn−1λx̃
(n−1) + · · ·+ c1λ

n−1 ˙̃x+ c0λ
nx̃ ≤ ε (11)
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Multiplying (11) by eλt yields

−εeλt ≤ dn

dtn
(x̃eλt) ≤ εeλt (12)

Integrating (12) between 0 and t gives

− ε

λ
eλt +

ε

λ
≤ dn−1

dtn−1
(x̃eλt)− dn−1

dtn−1
(x̃eλt)

∣∣∣∣
t=0

≤ ε

λ
eλt − ε

λ
(13)

or conveniently rewritten as

− ε

λ
eλt −

(∣∣∣∣ dn−1

dtn−1
(x̃eλt)

∣∣∣∣
t=0

+
ε

λ

)
≤ dn−1

dtn−1
(x̃eλt) ≤ ε

λ
eλt +

(∣∣∣∣ dn−1

dtn−1
(x̃eλt)

∣∣∣∣
t=0

+
ε

λ

)
(14)

The same reasoning can be repeatedly applied until the nth integral of (12) is reached:

− ε

λn
eλt −

(∣∣∣∣ dn−1

dtn−1
(x̃eλt)

∣∣∣∣
t=0

+
ε

λ

)
tn−1

(n− 1)!
− · · ·+

−
(
|x̃(0)|+ ε

λn

)
≤ x̃eλt ≤ ε

λn
eλt+

+

(∣∣∣∣ dn−1

dtn−1
(x̃eλt)

∣∣∣∣
t=0

+
ε

λ

)
tn−1

(n− 1)!
+ · · ·+

(
|x̃(0)|+ ε

λn

)
(15)

Furthermore, dividing (15) by eλt, it can be easily verified that, for t→ ∞,

− ε

λn
≤ x̃(t) ≤ ε

λn
(16)

Considering the (n− 1)th integral of (12)

− ε

λn−1
eλt −

(∣∣∣∣ dn−1

dtn−1
(x̃eλt)

∣∣∣∣
t=0

+
ε

λ

)
tn−2

(n− 2)!
− · · ·+

−
(∣∣ ˙̃x(0)∣∣+ ε

λn−1

)
≤ d

dt
(x̃eλt) ≤ ε

λn−1
eλt+

+

(∣∣∣∣ dn−1

dtn−1
(x̃eλt)

∣∣∣∣
t=0

+
ε

λ

)
tn−2

(n− 2)!
+ · · ·+

(∣∣ ˙̃x(0)∣∣+ ε

λn−1

)
(17)

and noting that d(x̃eλt)/dt = ˙̃xeλt + x̃λeλt, by imposing the bounds (16) to (17) and dividing
again by eλt, it follows that, for t→ ∞,

−2
ε

λn−1
≤ ˙̃x(t) ≤ 2

ε

λn−1
(18)

Now, applying the bounds (16) and (18) to the (n − 2)th integral of (12) and dividing once
again by eλt, it follows that, for t→ ∞,

−6
ε

λn−2
≤ ¨̃x(t) ≤ 6

ε

λn−2
(19)

The same procedure can be successively repeated until the bounds for x̃(n−1) are achieved:
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−

[
1 +

n−2∑
i=0

(
n− 1

i

)
ζi

]
ε

λ
≤ x̃(n−1) ≤

[
1 +

n−2∑
i=0

(
n− 1

i

)
ζi

]
ε

λ
(20)

where the coefficients ζi (i = 0, 1, . . . , n − 2) are related to the previously obtained bounds of
each x̃(i) and can be summarized as in (9).

In this way, by inspection of the integrals of (12), as well as (16), (18), (19), (20) and the other
omitted bounds, it follows that the tracking error exponentially converges to the n-dimensional
box determined by the limits |x̃(i)| ≤ ζiλ

i−nε, i = 0, 1, . . . , n− 1, where ζi is defined by (9). 2

Corollary 3. It must be noted that the proposed control scheme provides a smaller tracking error
when compared with the conventional feedback linearization controller. By setting the output of the
fuzzy inference system to zero, d̂(x̃) = 0, Theorem 2 implies that the resulting bounds are |x̃(i)| ≤
ζiλ

i−nδ, i = 0, 1, . . . , n − 1. Considering that ε < δ, from the universal approximation feature
of d̂, it can be concluded that the tracking error obtained with the fuzzy feedback linearization
controller is smaller than the associated with the conventional scheme.

5 Illustrative Example

In order to illustrate the controller design methodology, consider a controlled Van der Pol
oscillator

ẍ− µ(1− x2)ẋ+ x = υ (21)

with a dead-zone in the control input defined according to

υ =


u+ 0.2 if u ≤ −0.2

0 if − 0.2 < u < 0.2

u− 0.2 if u ≥ 0.2

(22)

For control purposes, equation (22) can be rewritten as a combination of a linear and a
saturation function [8, 12]:

υ = u+ d(u) (23)

where d(u) can be obtained from (22) and (23) as:

d(u) =


0.2 if u ≤ −0.2

−u if − 0.2 < u < 0.2

−0.2 if u ≥ 0.2

(24)

Based on (6) and considering d(u) as uncertainty, a fuzzy feedback linearization controller
can be chosen as follows

u = x− µ(1− x2)ẋ+ ẍd − 2λ ˙̃x− λ2x̃− d̂(x̃, ˙̃x) (25)

In order to evaluate the performance of the proposed control law (25), a numerical simulation
was carried out. The simulation study was performed with an implementation in C, with sampling
rates of 500 Hz for control system and 1 kHz for the Van der Pol oscillator, and the differential
equations were numerically solved using the fourth order Runge-Kutta method. The chosen
parameters for the Van der Pol oscillator and controller were µ = 1 and λ = 0.8.
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Regarding the fuzzy inference system, the number of fuzzy rules and the type of the mem-
bership functions, as well as how they are distributed over the input space, could be heuris-
tically defined to accommodate designer’s experience and experimental knowledge. The fuzzy
rule base adopted in this work is presented in Table 1, where NB, NM, NS, ZO, PS, PM and
PB represent, respectively, Negative–Big, Negative–Medium, Negative–Small, Zero, Positive–
Small, Positive–Medium and Positive–Big. Triangular and trapezoidal (at the ends) member-
ship functions are adopted for both X̃r and ˙̃Xr, with the central values defined respectively as
Cx̃ = {−20;−2;−0.2; 0.0; 0.2; 2; 20}×10−2 and C ˙̃x = {−16;−1.6;−0.16; 0.0; 0.16; 1.6; 16}×10−2.
The chosen fuzzy intersection operator was the minimum t-norm. It should be also emphasized
that the input space could be partitioned and represented in many other ways, and that the
system designer may test each one of them in order to improve the output value d̂. With re-
spect to the output of each rule, the following values were heuristically adopted for NB to PB:
D̂r = {−20 ; −5 ; −2.5 ; 0.0 ; 2.5 ; 5 ; 20}.

Table 1: Adopted fuzzy rule base.

x̃ / ˙̃x NB NM NS ZO PS PM PB
NB PB PB PB PM PM PS ZO
NM PB PB PM PM PS ZO NS
NS PB PM PM PS ZO NS NM
ZO PM PM PS ZO NS NM NM
PS PM PS ZO NS NM NM NB
PM PS ZO NS NM NM NB NB
PB ZO NS NM NM NB NB NB

In this way, considering that the initial state and initial desired state are not equal, x̃(0) =
[−2.0,−0.4], Figures 1–3 show the obtained results for the tracking of xd = [sin t, cos t].
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Figure 1: Trajectory tracking with xd = [sin t, cos t].

As observed in Figure. 1(a), even in the presence of modeling imprecisions, the proposed
control scheme allows the actuated Van der Pol oscillator to track the desired trajectory.

Now, in order to demonstrate the improved performance of the fuzzy feedback linearization
controller, the tracking error associated with the last simulation is shown in Fig. 2. For com-
parison purposes, the tracking error obtained with conventional feedback linearization is also
presented. It can be easily verified that the proposed controller provides a smaller tracking error
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when compared with the conventional one.
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Figure 2: Tracking error with conventional and fuzzy feedback linearization.

The phase portraits of the tracking errors obtained with conventional as well as fuzzy feedback
linearization are shown in Fig. 3. Note that the convergence region related to the proposed control
scheme is much smaller than the associated with its uncompesated counterpart, which confirms
Corollary 3.
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Figure 3: Phase portrait of the error with conventional and fuzzy feedback linearization.

6 Concluding Remarks

In this paper, a fuzzy feedback linearization controller is developed to deal with uncertain
single-input–single-output nonlinear systems. To enhance the tracking performance, the feedback
linearization controller is combined with a fuzzy inference system for uncertainty/disturbance
compensation. The boundedness and convergence properties of the tracking error vector are
analytically proven. To evaluate the control system performance, the proposed scheme is applied
to the Van der Pol oscillator. By means of numerical simulations, the improved performance
over the conventional feedback linearization controller is confirmed.
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