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Abstract: Interleaving along with error correction coding is an effective way to
deal with different types of error in digital data communication. Error burst due to
multipath fading and from other sources in a digital channel may be effectively com-
bated by interleaving. Normally the interleaver / deinterleaver pair is often designed
as reconfigurable architectures able to deal with requirements of large data length
variability found in the newest communication standards. In this work reconfigurable
interleaver architecture for the turbo decoder in 3rd Generation Partnership Project
(3GPP) standard is presented. The interleaver is a key component of radio commu-
nication systems. Using conventional design methods, it consumes a large part of
silicon area in the design of turbo encoder and decoder. The proposed interleaver
utilizes the algorithmic level hardware simplifications and generates 100 manage the
ow of data streams to achieve very low cost solution. The proposed technique reduces
consumption of FPGA resources to a large extent compared with existing state-of-
the-art interleaver for turbo codes. The proposed architecture con- sumes only 4856
logic elements by hardware optimization.
Keywords: 3GPP, interleaver, reconfigurable, turbo codes.

1 Introduction

Turbo codes [1] have been shown to provide superior error performance amidst hostile trans-
mission media. 3rd generation systems based on the 3GPP air interface standard [2] must support
turbo coding at data rates of between 384 kbps to 2Mbps, while maintaining low mobile station
power. A turbo code is formed from the parallel concatenation of two codes separated by an
interleaver [3] .The generic design of a turbo code is depicted in Figure 1. The two encoders
used are normally identical. The code is in a systematic form, i.e. the input bits also occur in
the output. The Turbo decoder consists of two elementary decoders in a serial concatenation
scheme. Since soft decoding performs better than hard decoding, the first decoder provides a
weighted soft decision in the form of A Posteriori Probabilities (APPs) to the second decoder.
The decoding proceeds in an iterative fashion as illustrated in Figure.2 [4]. The interleaver reads
the bits in a pseudo-random order. The choice of the interleaver is a crucial part in the turbo
code design. The task of the interleaver is to "scramble" bits in a pseudo-random, albeit pre-
determined fashion. This serves two purposes. Firstly, if the input to the second encoder is
interleaved, its output is usually quite different from the output of the first encoder. This means
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that even if one of the output code words has low weight, the other usually does not, and there
is a smaller chance of producing an output with very low weight. Higher weight is beneficial
for the performance of the decoder. Secondly, since the code is a parallel concatenation of two
codes, the divide-and-conquer strategy can be employed for decoding. If the input to the second
decoder is scrambled, also its output will be different or "uncorrelated" from the output of the
first encoder. This means that the corresponding two decoders will gain more from information
exchange [5].

A flexible and reconfigurable interleaver architecture for multimode communication environ-
ment is presented in [6]. The presented hardware in [6] enables the mapping of vital types of
interleavers including multiple block interleavers and convolutional interleaver onto a single ar-
chitecture. A parallel interleaver design that support for high throughput is presented in [7].In
the proposed work, circuit level VLSI optimization approach is used to reduce the overall com-
putation complexity and provides 100 % interleaved paths.

The paper is organized as follows. In section 2, a review of 3GPP algorithm is discussed.
Section 3 describes the proposed reconfigurable architecture of interleaver/deinterleaver. The
controller for the proposed reconfigurable interleaver architecture operated in two phases is ex-
plained in section 4. Section 5 describes about the address generation and section 6 describes
about exception handling. In section 7, simulation and synthesis results are reported and section
8 concludes the paper.

2 Interleaver algorithm

The 3GPP-defined turbo code interleaver algorithm [8] comprises a series of mathematically
complex processes that map an input sequence of length K (40 - 5114) to a scrambled sequence.
The algorithm can be summarized as follows.

Block size ’K’denotes the number of bits input to turbo code internal interleaver and takes
one of the value from 40 to 5114.

Determine the number of rows ’R’ of the rectangular matrix such that,
R= 5; if (40<K<159)

R=10; if((160<K<200)or(481<K<530))
R=20 ;if (K= any other value)
where rows are numbered form 0 to R-1.

Determine the prime number ’p’ to be used in intra-row permutations and the number of
columns ’C’ of the rectangular matrix as
if (481< K <530)
then p= 53 and C = p
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else

Find the minimum prime number p from table 2 in [6] such that K < (Rx(p-1)) and deter-
mine C Such that
C = p-1; if K< (R (p-1))
C = p; if R (p-1) < K < R p)
C=p+1; if (R p) < K

For every prime number p there exists a primitive root v.
Construct the base sequence S(j) for intra row permutation such that

S(j) = (v*S(j-1))mod (p) and S(0) = 1 where j=1,2,...,(p-2).
Determine the prime integers in the sequence q(i) such that

g.c.d(q,p-1) = 1, q(i)> 6 and q(i)> q(i-1) for i=1,2,.....R-1.
Permute the sequence q(i)to make the sequence r(i) such that

r(i) = T(q(i)), i = 0,1,...,R-1. where T(i) is a simple indexing transform.
It is defined by the standard and shown in Table 1.

Table 1 List of prime number p and associated primitive root ’v’

Perform the intra row permutation
if C = p , U(i,j)=S[(j*r(i))mod(p-1)] where U(i,p-1) = 0
if C= p+1,U(i,j)=S[(j*r(i)mod(p-1)] where U(i,p-1) = 0; and U(i,p) = p
and if K= R C, then exchange U(R-1,0) with u(R-1,p)
if C = p-1, U(i,j)=S[(j*r(i))mod(p-1)]-1 where i = 0,1,...,R-1
and j = 0,1,..,p-2.
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Table 2 Inter-Row Permutation Patterns

Perform the inter row permutation for the rectangular matrix based on the pattern T(i).It is
denoted as U(i)
U(i) = U(T(i)), where i=0,1,..,R-1.

Read out the addresses column wise.
Looking at the interleaver algorithm in 3GPP standard, the computationally intensive func-

tions found are Modulo Computation, Intra-row and Inter-row Permutations, Multipliers, Find-
ing least prime integers, and Computing greatest common divisor. Some of these complex func-
tions are implemented using the support from ROM, while the others are simplified to reduce
the hardware usage.

The interleaving process can be easily separated into two main phases. The two phases are
Pre-computation phase and Execution phase. As different block sizes has different interleaving
patterns, thus every time some pre-computation is needed while changing the block size ’K’. The
only parameter applied to interleaver is the block size (K) and rest of the parameters is computed
by the hardware itself.

2.1 Pre-computation Phase

Pre-computation phase involves pre-computing the various parameters required for the in-
terleaving process. It has to be performed each time the change in the block size occurs, that
means for a fixed block size K, these operations have to be performed only once.

2.2 Execution phase

Execution phase calculates the intra row permutations Ui,j, and the interleaved address
i_addr .Write or Read the data bits ( in/ from a data RAM) can be taken place depending
upon whether interleaving or deinterleaving is performed of addresses could also be computed
and saved in the memory only.

For each data block, the execution phase has to be performed. The set of addresses could
also be computed and saved in the memory only once.This approach permits to reduce the
implementation size of Interleaving / Deinterleaving algorithm as compared to the memory or
look up table (LUT) based approach, where the interleaving addresses are saved in memory.
Thus execution phase performs basic permutations which form the interleaving process. The
basic permutations performed in this phase are illustrated in fig.4.

3 Proposed Architecture of Reconfigurable Interleaver

The main objective of the proposed work is to device an architecture capable of managing
every one of the 5074 different block sizes of data ranging from 40 to 5114 defined in the 3GPP
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standard, while maintaining low hardware complexity. The proposed interleaver is said to be
reconfigurable, since it adapts or varies its interleaving architecture depending upon the block
size ’K’ of the input rectangular matrix. The reconfigurable interleaver accepts only the block
size of the rectangular matrix as the input. The rest of the parameters such as the number of
rows, columns and the base sequence for permutation (both intra row and inter row permutation)
are calculated by the reconfigurable architecture for interleaver address generation. The block
diagram of proposed reconfigurable interleaver/deinterleaver is shown in Figure 5. It consist of
modulo-computation block, Multiplication addition and comparison hardware, Controller circuit
, I/O RAM, Data RAM, Exceptional logic block, S(j) RAM and LUTs etc.

3.1 Precomputation of Parameters

The computation of parameters in pre-computation for 3GPP is discussed in detail by Blakley
[9]. Some parameters are computed using look up tables while the others need some close loop or
recursive computations. First, the row value ’R’ with logical functions is calculated. Parameters
like prime number ’p’ and primitive root ’v’ are stored as a pair in a look up table just like in
the standard and LUT is read via a counter generated by the controller based on equation (1).

K ≤ R ∗ (p+ 1) → (K −R) ≤ (R ∗ p) (1)

In order to perform the operation in equation (1) the architecture given by Blakley is used in
the proposed work. It is shown in Figure 6.The same hardware architecture is used in execution
phase also. For computation of ’p’ and ’C’ operations such as the multiplication, addition and
comparison are required. It is controlled by the flags generated by the controller. Once ’p’ and
’v’ are obtained then numbers of columns have to be determined.

The three possible column values are p-1, p or p+1 and always the following condition shown
by the equation (5.2) should be satisfied.

(R ∗ C) ≥ K (2)
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The computation of intra-row permutation pattern S(j) required modulo computation. Mod-
ulo function is computed iteratively using the Interleaved Modulo Multiplication Algorithm [9].It
is an iterative numerical algorithm based on additions, shifts, comparisons and bit retrieval. In
order to calculate the S(j) sequence, it is mandatory to perform the modulo operation. A flow
diagram depicting this algorithm is shown in Figure 7.

The hardware for the computation of S (j) is shown in Figure 8. This architecture uses two
adders, a multiplier and a subtractor to compute the S (j) values. The S array is computed as
follows (3) with S (0) = 1.

S(j) = (v ∗ S(j − 1))mod(p) (3)

Where j =1, 2... (p-2)

From the above equation it is known that, primitive root ’v’ is required to compute S(j),
which is 5 bits. So maximum of 5 iterations are needed to compute one modulo multiplication.
With this architecture every S (j) is determined and writes in a RAM of 256 x 10 bits. The size
of the RAM depends upon the value of ’p’. The number of cycles needed to calculate every S
(j) depends on v, which can take only six different values 2, 3,5,6,7 and 19. For v = 2 and v
= 3 only one iteration is required for v = 5, v = 6 and v =7 two iterations and for v =19 four
iterations are required.

According to the 3GPP algorithm, the next step is calculation of the prime sequences q (i).
It can be noticed that the qi sequences [10] are almost the same in most cases and they only
differ by one or two elements from other sequences. Based on this observation, sub groups of
q (i) sequence are placed into a ROM and then choose one according to the ’p’ value [11]. In
the proposed work, instead of finding the least prime number sequence q (i), q(i) mod (p-1)
is determined. This gives the benefit of computing the RAM address recursively and avoiding
computation of modulo function. This idea is introduced by Shin and Park [12] and later used
by Wang and Li [13]. According to the equation (4) q (i) is calculated.
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q(i) = q(i)modp− 1 (4)

where i = 0,1,2,3,...p-1

The architecture used to perform q(i) is shown in Figure 9. In the proposed work, the
architecture of S (j) is used with some alterations to determine q mod (p-1). It is calculated in
such a way that the following conditions have to be satisfied.

g c d(q, p-1) = 1, q(i) > 6 and q(i) > q(i-1) for i = 1,2,.....R-1.
g c d is the Greatest Common Divisor. The selected prime number from the prime number

table should be 6 and g c d (q, p-1) = 1.If the above condition is satisfied then the value of i =
i+1, j = j+1 and the next prime number is selected. The selected prime number becomes one
of the member of q(i) and the value of ’j’ is also incremented by1.If the condition is not satisfied
then i=i+1,j=j.

3.2 Execution Phase Computation

After completing the pre-computation phase, the controller is set in execution phase and the
hardware is configured to perform run time computations for the generation of the interleaved
addresses.RAM address are computed using the hardware shown in Figure 6. The recursive
function used to compute the RAM address and multiply?add function to compute the final
interleaved address are as follows:

Ramadr(i, j) = [Ramadr(i, j − 1) qmod (i)]mod(p− 1) (5)

It can be seen that computing the RAM address using qmod (p-1) instead of q helps to avoid
the full computation of modulo multiplication. After computing the RAM Address, the final
interleaved address is computed by the multiply?add function. The interleaved addresses are
obtained by performing the inter row T (i) and intra row Ui,j permutations in executing phase,
where T(i) is stored in a LUT while the Ui,j is stored in a RAM. With these parameters and the
using the equation (6), the interleaving addresses i_addr are finally generated.

iaddr ((i× C) + j) = (C × T (i)) + Ui, j (6)

with i = 0,1,...,R-1; j = 0,1,...,C-1

[C×T(i)] is computed by the architecture shown in Figure 6.The result of this computation
points to the first element of each of the ’R’ rows in the rectangular matrix, and then by adding
Ui,j with the same architecture, a displacement along every row is obtained. Ui,j is obtained by
calculating modulo operation (j × r(i)) mod (p-1).It has the same form as (v × S(j-1))mod p in
the pre-computation phase. Since the computation of S (j) and Ui,j are performed at different
phases, the same architecture is used with some modifications. Since the same architecture is
used in both the phases, hardware complexity is reduced.

3.3 Modulo Computation

One of the important blocks in the proposed reconfigurable architecture is "Modulo Compu-
tation". This block plays a crucial role both in execution phase and in pre-computation phase.

Figure 10 shows the architecture of modulo computation introduced by Rizwan Asghar and
Dake [10]. The main block is depicted in Figure 10 by blue colour. It is separated and shown in
Figure 11a. In pre-computation phase, this architecture works 100% efficiently. But in execution
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phase, its efficiency is only 88%. The problem will occur when q (i) > 2(p-1)[10]. This problem
is nullified by performing subtractions like q(i) - (p-1), q(i) - 2(p-1), q(i) - 3(p-1) and q(i) - 4(p-1)
instead of q(i) - (p-1) [11]. It is illustrated in Figure 11b. In the proposed work, this structure
is further modified as shown in Figure 12.

In order to nullify the problem, always q(i) must be less than p. In the proposed work q (i)
is compared with p. After comparison the small value is assigned to q (i) and the large value is
assigned to p .Hence in the proposed work, during the execution phase also modulo computation
block works 100% efficiently. There are three multipliers are used.[11] to generate 2(p-1), 3(p-1)
and 4(p-1). But the proposed modified architecture does not contain any multipliers; hence
hardware complexity is reduced. This architecture performs all modulo operations required by
the 3GPP standard. With this modification the obtained hardware architecture works properly
in both the pre-computing and executing phase.

4 Control Finite State Machine

In order to synchronize every block in the architecture, a "Controller" block generates all
control signals; its state machine diagram is shown in Figure 13.

The controller mainly works for the pre-computation phase of 3GPP. It configures different
functions like multiply, add, compare and modulo computation hardware to find all the vital
parameters R, C, p, v and S (j). Usually interleavers in the turbo coded system work with the
same block size ’K’ several times before changing it. When an interleaving operation is required
the pre-computation phase is performed, where S (j) is calculated and placed in RAM. Then the
execution phase starts where interleaved addresses are calculated continuously meanwhile ’K’
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does not change. The new pre-computation phase can be initiated by changing the block size
’K’.

5 Exception Handling

In the 3GPP interleaving algorithm, there are some exceptions that are reflected in the
architecture. The final address is tagged valid or invalid using the comparator. This is called
pruning of the interleaver and is needed for the case when interleaver block size is not exactly
equal to R*C. For example, for K = 43 the rectangular matrix size is 5x10, and then there would
be seven invalid addresses. Because of that, a valid address cannot be generated per clock cycle.

Interleavers presented by Shin and Park [12] Wang and Li[13], [11] and Carlos Sánchez [14]
provides the interleaved addresses with valid or invalid tag. But in the proposed architecture,
if the input data stream of any size between 40 and 5114, then the interleaver rearranges it
according to the corresponding 3GPP interleaved path and provides the data stream even the
exception is present. In order to manage data streams, a data RAM is used in the proposed
design. When the proposed architecture is operated in interleaver mode, this RAM is used to
hold data input when invalid addresses are generated and waiting for a valid address in order to
write this data to DATA RAM. In deinterleaver mode, when invalid address is read from DATA
RAM, the I/O RAM ignores this data, waiting for a valid data and then output this data.

6 Performance Analysis Of Reconfigurable Interleaver

The RTL code for the hardware blocks is written in Verilog and downloaded it to the FPGA
Cyclone III from ALTERA. The RTL diagram of reconfigurable interleaver / deinterleaver is
shown in Figure 14.

The number of clock cycles spent for pre-computation through is mentioned in Table 3. These
cycles mainly depend on the value of p and v for a particular block size.

The maximum clock frequency of 69.91 MHz is shown in Figure 15.Table 4 summarizes
comparison of the performance with existing state-of-the-art interleavers. As it can be seen from
the Table 4, the proposed design occupies about 4586 out of 5136 logic elements.

It is worth mentioning that although the proposed design is bigger than others, it includes the
hardware for exceptions handling, an I/O RAM and a DATA RAM as well as extra hardware to
control them. In this way, the proposed architecture is capable of working both as an interleaver
and as a de-interleaver.In this proposed interleaver/deinterleaver latency and throughput can
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vary depending on the block size. The maximum block size is K=5114.The proposed architecture
requires 5120 clock cycles which represents a realistic insignific ant overhead.

7 Conclusions and Future Work

In this paper a fully functional 3GPP Turbo code interleaver/ deinterleaver architecture that
receives an input data stream of any size established by the 3GPP standard and delivers this
stream interleaved or deinterleaved depending on the user requirements is presented. In this
proposed design modulo computation is done by computer algorithm to calculate and took ad-
vantage of using the same hardware in pre-computation and execution phases by multiplexing
it. Novel VLSI architectures have been introduced in this design. By adding RAMs for data
handling and achieved a complete architecture that can perform interleaving/deinterleaving op-
erations as required by the 3GPP standard for Turbo codes.One of the important parameter
is pre-computation cycle cost. If the pre-computation cycle cost is less then, the design sup-
ports fast switching among different standards. Hence future work is to design reconfigurable
interleaver which is suitable for a multimode environment.
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