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Abstract: Sensing tasks should be allocated and processed among sensor nodes in
minimum times so that users can draw useful conclusions through analyzing sensed
data. Furthermore, finishing sensing task faster will benefit energy saving. The above
needs form a contrast to the lower efficiency of task-performing caused by the failure-
prone sensor. To solve this problem, a multi-objective optimization algorithm of task
scheduling is proposed for wireless sensor networks (MTWSN). This algorithm tries
its best to make less makespan, but meanwhile, it also pay much more attention to
the probability of task-performing and the lifetime of network. MTWSN avoids the
task assigned to the failure-prone sensor, which effectively reducing the effect of failed
nodes on task-performing. Simulation results show that the proposed algorithm can
trade off these three objectives well. Compared with the traditional task scheduling
algorithms, simulation experiments obtain better results.

Keywords: Wireless Sensor Networks (WSN); task scheduling; multi-objective op-
timization; improved NSGA-II .

1 Introduction

Sensing tasks should be allocated and processed among sensor nodes in minimum times so
that users can draw useful conclusions through analyzing sensed data. Furthermore, finishing
sensing task faster will benefit energy saving, which is critical in system design of wireless sensor
networks. The primary objective of task scheduling in wireless sensor networks is to find an
optimal strategy of splitting the original tasks received by SINK into a number of sub-tasks as
well as distributing these sub-tasks to the sensors in the right order. The directed acyclic graph
[1], independent task sets|2] and divisible load theory [3] are usually used as modeling tools for
task scheduling in wireless sensor networks, but these models only take the makespan as the
main objective, and assign the task to sensors. However, wireless sensor networks are widely
applied to both abominable and military environments. Meanwhile, the complexity of networks,
the limited energy of sensors, and potential physical or logical faults, bring challenge to task
scheduling of wireless sensor networks.

Wireless sensor network is one kind of the widely used distributed real-time systems. How to
assign tasks of system to sensors in unstable and unreliable network environment, and guarantee
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their deadlines is one of the key techniques in wireless sensor networks. In wireless sensor network
environments, QoS guided task scheduling problem is complex and challenging, especially when
the tasks have multiple needs.

In this paper, a multi-objective optimization algorithm of task scheduling is proposed for wire-
less sensor networks. It is the first time that the NSGA-II [4] algorithm is used to analyze the
task scheduling for wireless sensor networks. Based on the characteristics of wireless sensor net-
works, makespan optimization, the energy-consuming balance optimization and task-performing
probability optimization are included. A mathematical model used to optimize the task schedul-
ing problem by NSGA-II was built and the solution was presented, and a detailed process to
solute the multi-objective programming model is put forwards. The problem is solved with a
multi-objective genetic algorithm (GA) optimization method combined with linear programming
(LP) and a group of pareto solutions are provided.

2 Related work and motivation

Wireless sensor networks have restrictions due to energy, memory, and communication ability.
We should realize the goal of the improvement and enhancement of sensor networks performance
in real time, economy, power aware and harmony.

Some studies over the past decade have been conducted to reduce the overall energy consump-
tion for task scheduling in wireless sensor networks by using diverse techniques [5-14]. Heemin
presents an energy-efficient task assignment and migration framework for sensor networks. With
the proposed framework, optimal task transformation and assignment is sought so as to mini-
mize given cost function|6]. Younis M presented an optimization scheme for task allocation to
gateways [7]. The task allocation problem is modeled as a zero-one nonlinear program. He study
system partitioning of computation to improve the energy efficiency of a wireless sensor net-
working application. Wang explored system partitioning between the sensor cluster and the base
station, employing computation-communication tradeoffs to reduce energy dissipation|[8]. Also
he showed that system partitioning of computation within the cluster can also improve the en-
ergy efficiency by using dynamic voltage scaling. Tian presented a task mapping and scheduling
solution for real-time applications (RT-MapS) in WSNs|9]. RT-MapS incorporates wireless chan-
nel modeling, hyper-DAG extension, concurrent task mapping, communication and computation
scheduling, and dynamic voltage scaling (DVS) methods. Tian also presented a task mapping
and scheduling solution for energy-constrained applications in WSNs, energy-constrained task
mapping and scheduling (EcoMapS)[10]. EcoMapS incorporates channel modeling, concurrent
task mapping, communication and computation scheduling, and sensor failure handling algo-
rithm. The performance of EcoMapS is evaluated through simulations with randomly generated
directed acyclic graphs (DAG).Yu proposed an energy-balanced allocation of a real-time appli-
cation onto a single-hop cluster of homogeneous sensor nodes connected with multiple wireless
channels[11]. An epoch-based application consisting of a set of communicating tasks is consid-
ered. Each sensor node is equipped with discrete dynamic voltage scaling (DVS). The time and
energy costs of both computation and communication activities are considered. He proposed
both an Integer Linear Programming (ILP) formulation and a polynomial time 3-phase heuris-
tic. Gu presented an application independent task mapping and scheduling solution in multi-hop
Video sensor networks (VSNs) that provides real-time guarantees to process video feeds[12]. The
processed data is smaller in volume which further releases the burden on the end-to-end com-
munication. Using a novel multi-hop channel model and a communication scheduling algorithm,
computation tasks and associated communication events are scheduled simultaneously with a
dynamic critical-path scheduling algorithm. Dynamic voltage scaling (DVS) mechanism is im-
plemented to further optimize energy consumption. Xie developed a novel task allocation strategy
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called BEATA (Balanced Energy-Aware Task Allocation) for collaborative applications running
on heterogeneous networked embedded systems|[13]. The BEATA algorithm aims at blending an
energy-delay efficiency scheme with task allocations, thereby making the best tradeoffs between
energy savings and schedule lengths. Besides, He introduced the concept of an energy-adaptive
window, which is a critical parameter in the BEATA strategy. By fine-tuning the size of the
energy-adaptive window, users can readily customize BEATA to meet their specific energy-delay
trade-off needs imposed by applications. Further, he built a mathematical model to approximate
energy consumption caused by both computation and communication activities. A task alloca-
tion framework for Underwater Acoustic Sensor Networks (UW-ASNs) that participate as a team
to accomplish critical missions is developed by Kulkarni[14]. The team formed as a result of this
task allocation framework is the subset of all deployed AUVs that is best suited to accomplish
the mission while adhering to the mission constraints.

Most of the existing task scheduling algorithms is normal ones without consideration of
harmony and reliability in our research. This problem will need to be further gone into for
improving the wireless sensor networks characteristics on real time, economy, power aware and
harmony.

The above discussed task scheduling algorithms are mainly for the problem of assignment
tasks with the objective of minimizing the makespan and energy consumption, effective algo-
rithms is discussed in these papers, and these algorithms will be able to distribute tasks to nodes
with the expected value of the minimum earliest-finish-time and make them executed parallel
and efficiently. However, tasks distributed to remote sensors may be unable to complete because
of physical failures or attack, and the complexity, dynamics and open deployment of the wireless
environment increases the possibility of that happening. Existing task scheduling policies are not
consider this question, so tasks will be assigned to the sensors with lower reliability to perform,
what make measurement tasks automatically cease to be in force due to sensor failure, and then
lowered the efficiency and QoS of wireless sensor networks.

Compared with the previous research, the main contributions of this paper are presenting the
concept of " task-performing probability ", and proposing a multi-objective optimization task
scheduling algorithm for wireless sensor networks considering makespan optimization, the energy-
consuming optimization and task-performing probability optimization simultaneously. Consider-
ation shall also be given to ensuring a reasonable distribution of tasks to reliable sensors, taking
into account the makespan and energy consumption. This algorithm schedules tasks avoiding
allocation some tasks to unreliable sensors, thus effectively lowering the influence of sensor failure
on task performing.

3  The Task Scheduling Model for WSNs

In this section, we describe mathematical models which were built to represent a task schedul-
ing framework.

3.1 Task Model

Generally, a wireless sensor network consists of a set of heterogeneous sensors in abominable
or military environments. Sensor nodes always break down due to hardware failure, software
error, energy exhaustion and disturb from outer environment, so the precondition of the tasks
accomplished successfully is the sensors to provide a stable hardware and software needed to
perform the given tasks. Each sensor is in a "active" or "inactive" state at a given time. The
task is impossibly accomplished on a inactive sensor, and the status information also will be
missed or ineffective.
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Let A; be the failure probability of sensor S; , then the task-performing probability of the
tasks accomplished successfully on sensor S; is 1 — A; . We assumed that the failure process of
each sensor is independent and yields to poisson distribution.

We defined the task set as I' = {7y, 79, - -, 7,}. According to the previous assumption, the
tasks in the task set is independent each other.

3.2 Makespan Model

Suppose that a wireless sensor network consists of m sensors, S = {S1, S2, - -, Sm}. There
are n independent tasks competing the m sensors. We aim to scheduling the n tasks to the m
sensors reasonably, to make the minimum makespan of the tasks. And we characterize a n x m
matrix X satisfying the scheduling results. When z; ; =1 (x; ; € X)), it meant that we schedule
the task 7; on sensor S; to process, otherwise, x; ; = 0.

The task-processing time of each sensor can be estimated by forecasting techniques and
history status based on task type. The task-processing time can be represented by a n x m
matrix Y, in which the matrix element y; ; represents the estimated task-processing time that
task 7; runs on sensor S;.The task-processing time of sensor §; is the sum of all the tasks
processing time that the tasks run on Sj.

It can be expressed as follow:

n
T =Y 4ij (1)
i=1

Then, the makespan that the n tasks scheduled to the m sensors according to the scheduling
result X is expressed as:

T(Fast) = MamSzES[R(Sj)] (2)

3.3 Energy Consumption Model

Because of the limited energy in wireless sensor networks, the research on low power tech-
nology and long lifetime is pivotal in the architecture of wireless sensor networks. The energy
consumption of wireless sensor networks mainly composed of communication and task-performing
energy consumption.

Communication energy consumption is relevant to the minimum energy-communication for
a given standard distance P and the distance d; ; between sensor S; and sensor S;.

P, = (4m)*d; ;BPy ) d3GiGr N (3)

where G; and G, are the antenna gains (with respect to an isotropic radiator) of the transmit-
ting and receiving antennas respectively, A is the wavelength, and [ is the energy consumption
factor. Since (47)23Py/GyG,)\? is constant, one unit of communication energy consumption is
indicated as di i/ d3.

Task-performing energy consumption of sensor S; for finishing all its tasks is:

Ej = CyT; (4)

where Cj is the task-performing energy consumption of one certain task in one unit time.
The relative task-performing energy consumption of sensor S; can be represented as follow:

Rj = Ej/Mazs,cs(Ej) (5)
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Excluding energy consumption, the lifetime of wireless sensor networks is the critical esti-
mated part in task scheduling too. To extend network lifespan, we should balance the energy
consumption of every sensor during the period of ordinary operation. We can measure the
uniformity of sensors’ residual energy based on entropy theory.

The uniformity of sensors’ residual energy after data transmission in ¢ can be represented as
follow:

Hi ==Y p(Ei)logp(Ei) (6)

where Ej; is the residual energy of sensor S; in ¢, and Hj; is the value of residual energy
entropy in the network. The higher Hj;;, the more residual energy in the network, then the
longer lifetime of the network.

Thus, we define the evaluation function of energy consumption for sensor Sj is that:

C(8y) = —d; jR; H /dj (7)

The less C(S;) means that the energy consumption of data transmission and executing tasks
has less effect on the residual energy in the network.
The evaluation function of energy consumption for the network is defined as:

C(L,5.X) =) C(S) (8)

The smaller the value of C'(L, S, X), the longer network lifetime.

3.4 Task-performing Probability

The concept of task-performing probability comes from the survivability of distributed sys-
tem. Survivability represents that tasks are capable of being performed steadily and regularly in
the networks.

Definition. The task-performing probability means the probability that task could be ac-
complished successfully on specified sensor.

Let P(7;,S;) be the task-performing probability that task 7; accomplished on sensor Sj;.
In accordance with the illustrations in the previous section, the task-performing probability is
exp(—A\;t) that sensor be in the normal (ACTIVE) state within ¢. Because the tasks can be
performed normally only when the given sensor is in a "normal" state, so we can get:

P(7;,8;) = exp(—A;R(S;)) 9)

Let P(I', S, X) is the task-performing probability the n tasks to the m sensors according to
the scheduling result X, then we can get:

P, S, X) = exp[— izz Nz iR (10)

Taking the task-performing probability as goal is to avoid the tasks scheduled to the sensors
with low reliability.

Lowering the influence of sensor failure on task performing, then to maximize the task-
performing probability of task set I, that is, we will maximize P(T', S, X) by our task scheduling
algorithm to obtain the most suitable X. Thus, the quality of service for wireless sensor networks
will be improved.
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In eq. 9, let L(7;,5;) = —AjR(S;), we can see that if we want to increase the value of
P(7;,S;), then we must lower the L(7;, S;).
i=nj=m
Let L(I', S, X) = > > Ajx;; R(S)), then we can see that maximizing P(I", S, X') means to
i=1 j=1
Minimize L(T', S, X).
The task scheduling algorithm taking the task-performing probability as goal makes the value
of L(T', S, X') as minimal as possible.

4 Optimal Task Scheduling Based on Improved NSGA-II

4.1 Multi-Objective Optimization Problem

In the case of a Multi-Objective Optimization (MOQO) problem, there is usually no single
solution that is optimum with respect to all objectives. There are a set of optimal solutions
known as pareto optimal solutions. Without additional information, all these solutions are
equally satisfactory. The goal of MOO is to find as many of these solutions as possible.

In the research of pareto front many methods have been proposed. David Schaffer first imple-
mented a multi-objective evolutionary algorithm called the vector-evaluated genetic algorithm
or VEGA in 1984. His algorithm started off well but tended to converge to a single solution. To
prevent the convergence to a single solution, Goldberg and Richardson suggested using a non-
dominated sorting procedure coupled with a niching strategy called sharing. Sharing takes into
account that individuals in the same niche must share the available resources. This concept is
integrated into the pareto genetic algorithm by increasing the cost of chromosomes as a function
of their distance from each other. Closely grouped chromosomes will find their costs increased
more than chromosomes that are spaced far apart.

The multi-objective genetic algorithm (MOGA)[15] starts by finding all non-dominated chro-
mosomes of a population and gives them a rank of one. These chromosomes are removed from
the population. Next, all the non-dominated chromosomes of this smaller population are found
and assigned a rank of two. This process continues until all the chromosomes are assigned a
rank. The largest rank will be less than or equal to the size of the population. Usually, there are
many solutions that have the same rank. The selection procedure uses the chromosome ranking
to determine the mating pool. MOGA also uses niching on the cost to distribute the population
over the pareto optimal region [16].

Non-dominated Sorting Genetic Algorithm (NSGA)[17] ranks chromosomes in the same man-
ner as MOGA. The NSGA algorithm then calculates a unique value. This unique value is related
to the distance between each solution and its two closest neighbors. Distance may be calculated
from the variable values or the associated costs. The resulting values are scaled between 0 and
1 and subtracted from the cost. Further information about the evolution of this method can be
found in [4,16,17].

As discussed above, the goal of MTWSN is to find the solutions giving the best trade-off
between the three conflict objectives, known as Pareto optimal. MOGAs|4,17] are recognized to
be well qualified to tackle multi-objective optimization problems. NSGA-II[4] is one of the most
popular MOGAs. Some concepts of multi-objective optimization problem are defined as follows.

Definition 1 (Multi-objective optimization problem). Given an n-dimensional decision
vector x = {1, %9, -+, Tn} in the solution space X, find a vector z* that maximizes a given set
of k objective functions f(z*) = {f1(z*), fa(z*),- - -, fr(2*)}. The solution space X is generally
restricted by a series of constraints, such as g;(z*) = b; for j =1,2,---,m.

Definition 2 (Dominance). A vector u = {uj,ug,- - -, u,} is said to dominate a vector
v = {v1,v9,- - -,v,} if and only if u is partially less than v, i.e., Vi=1,2,-- - n, u; <v; AJi =
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1,2,~ Ty Us < ;.

Definition 3 (Pareto optimal solution). A solution z, € X is said to be pareto optimal
if and only if there is no z,, € X for which v = f(z,) = {v1,v2, - -, v} dominates u = f(x,) =
{ur,ug, -, un}.

Definition 4 (Pareto optimal set and front). Let A C X. The nondominated set
regarding A, represented by X, is defined as X, = {z € A|z is nondominated regardingX}.
The corresponding objective function values in the objective space are defined as Y, = FI(X) =
{f(z)]z € Xp}, where X, is called the pareto optimal set and Y, is called the cohere pareto
optimal front.

However, the solutions found by original NSGA-II are likely to be inferior or only comparable
to that by classical heuristic search algorithms because of premature convergence. To find perfect
solutions, a delete operator for NSGA-II is proposed to enhance the search capability. When
selecting the elitist, if neither of the two individuals in a population wins out and their genes are
the same, then delete one of them. Furthermore, a circulation selection is presented to preserve
excellent genes of the parent population. Suppose there are K individuals in a population
(indy,indsg, - - -, ind k) when the crossover operations are carried out. The first time the operation
is carried out with (ind,inds) as parents, the second time (indz,inds) are taken as parents, and
so on. Similarly, the last child is done by (indg,ind;). By this way, K offspring individuals are
generated. The genes of each parent are inherited by two offspring individuals, thus avoiding the
loss of excellent solutions.

4.2 An Efficient Task Scheduling Algorithm

The motivation here is to provide the user with a set of pareto optimal solutions by the
NSGA-II algorithm and give it the flexibility to choose the best possible solution from this set,
depending on the specific application requirements.

Now, we can construct the cover set using the optimal pareto solutions generated by the
improved NSGA-II algorithm. The chromosomes of a genetic algorithm contain all the building
blocks to a solution for the genetic operators and the fitness function. In our implementation,
each individual node is represented by a one-bit binary number called gene. This one-bit gene
defines the status of the sensors as follows:

(11)

1, if task 1; runs on S;
Tid = 0, otherwise

We assign each individual with three fitness functions, makespan, energy consumption and
task-performing probability. By introducing the non-dominated sorting approach and the crowded
distance operator the replacement scheme is executed. First, a combined population R; = P,UQ;
is formed with the parent population P; and the offspring population )¢, where t is the number
of generation. Therefore the population R; will be of size 2N. And it is sorted according to
the non-domination and crowded comparison. By adding solutions from the first front till the
size exceeds N, the new parent population Py is formed. After that, the solutions of the last
accepted front are sorted according to the crowed comparison and the first (V — Size(Piy1))
points are picked. In this way, the population Py of size N is constructed. Subsequently, it is
used for the circulated selection, crossover, and mutation to create a new population Q¢ of size
N. The recombination operator used in this paper is K-point crossover. After recombination,
the mutation operator is applied to complement some genes in the chromosomes of the child
randomly.

This entire process is repeated until the difference of fitness values among the current pareto
optimal set and the previous one is less than a chosen precision (¢). The main procedure of
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Input: Task set I' = {7y, 7o, - - -. 7, }, the number of generations M az_generation,
population size N, recombination probability P., mutation probability P,
reduction of the controlled elitism p

Output: Nondominated solutions in P

1 Set t =0, P’ = (). Generate an initial population P randomly. Calculate the objective
functions for each individual; /*Initialization®/

F:=Do Fast_non_dominated_sorting algorithm;

repeat

Lo

.

until S;:=Generate offspring from P; according to recombination and mutation operator;;
Rg = P{- U Qg

F:=Do Fast_non_dominated_sorting( R;);

Set Pb+1=0;i:=1;

while Size(Pi+1+F;) < N do
Crowding_distance_assignment(F;);

10 Riiq:= Pg+1 UFg;

11 =1+ 1;

12 end

13 if Size(Pi+1) < N then

14 Sort F} in descending order using crowded comparison;
15 Put the first (N — Size(Pi+1)) members of F; in P4y, ie.,
Piy1:= P UF[1 : (N — Size(Piy1))] ;

16 end

17 Calculate all objective functions for each individual in Pixq;
18 F:=Do Fast_non_dominated_sorting algorithm;

10 if fitness_changes < £ then

20 ‘ Get Pareto Optimal value;

21 end

22 ti=t+1;

23 Until ¢t < Max_generation;

=T v RS B =~

—

Algorithm 1: A Genetic Approach to Task Scheduling Algorithm

algorithm is described as algorithm 1:

5 Performance Evaluation

In this section, we will present the simulation results as the performance evaluation of our
proposed task scheduling algorithm. The performance of our proposed algorithm is compared
with RT-Maps [9], EcoMaps [10], and EBTA [11] task scheduling algorithms in wireless sen-
sor networks in terms of the makespan, and energy consumption of task scheduling. For our
experiments, we use 50 sensor nodes and a sink, which is not power constrained. Nodes are
distributed in a 100X100 meter square area yielded to random poisson distribution. To evaluate
the performances of the task scheduling algorithms properly, experimental parameters of the four
algorithms were set as the same ones.

The performance of the genetic algorithm is greatly affected by a number of factors, such as
the population size, the probability of mutation and crossover, and the method of scheduling.
We have run a number of experiments with different values of these parameters to determine the
optimal set for our network size. Finally, the GA parameters used in our simulations are listed in
table 1. Although we allow the GA to run for a maximum of 100 generations, we have observed
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Figure 1: Schematic diagram of statistic information for scheduling

that the best solution is typically found within 40 generations.

Table 1: GA parameters used in Simulation

Parameter Value
Population size 200
Recombination rate 0.9
Mutation rate 0.005
Reduction rate 0.5

The simulation results are shown in Fig. 1 to Fig. 3.

Figure 1 delineates the statistical information of the proposed task scheduling algorithm. We
investigates the space of optimum configuration parameters (makespan, energy consumption and
task-performing probability), using unconstrained optimization, to highlight the trade-offs faced
by the WSNs considered. In order to solve the optimization problem, we chose a pareto-compliant
ranking method based on evolutionary techniques, namely the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II). Fig. 1 shows the result of the joint optimization of the three objective
functions. These results show that the higher the balanced energy consumption or the higher the
probability of task performing, the shorter the makespan. The important outcome of the results
in Fig. 1 is that it provides details about the optimal network configuration, since tuning the
network with the parameters derived from the execution of the NSGA-II algorithm guarantees
that the network performance is not biased toward any one of the performance indicators.

The makespan metric is compared between proposed task scheduling algorithms for wireless
sensor networks in Figure 2. It explains that the makespan for wireless sensor networks is lower
for proposed algorithms than RT-Maps [9], EcoMaps [10], and EBTA [11]. This is because that
in proposed algorithm the tasks have been finished on minimum makespan as the target function.

Figure 3 shows the comparative performance in terms of energy consumption of sensor
nodes.With the increase of the number of tasks in the network, the energy consumption of task
scheduling and data transmission in the algorithms increases. However, the energy consumption
in the proposed algorithm is lower than RT-Maps [9], EcoMaps [10], at fixed number of tasks.
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Figure 2: Makespan of different scheduling algorithms

6.5 4
5.0
5.5 4
5.0 4

4.5 4

4.0 4

= MTWSN
—e»— EBTA
—a— RT-Maps
—v— EcoMaps

3.6 4

Energy-consumption Factor

3.0 4

25 T r I . T r T r I r T
100 150 200 250 300 350

Number of Tasks

Figure 3: Energy-cosumption factor of different scheduling algorithms

Our proposed task scheduling algorithm results in lowest energy consumption for higher number
of tasks. This shows the efficiency of the proposed algorithm.

6 Conclusions

The optimization of task scheduling is studied to reduce the energy consumption and ensure
the effective information acquisition in wireless sensor network. A multi-objective optimization
algorithm of task scheduling is proposed for wireless sensor networks in this paper. It is the
first time that the NSGA-II algorithm is used to analyze the task scheduling for wireless sensor
networks. Based on the characteristics of wireless sensor networks, makespan optimization,
the energy-consuming balance optimization and task-performing probability optimization were
included. A mathematical model used to optimize the task scheduling problem by NSGA-II
was built and the solution was presented, and a detailed process to solute the multi-objective
programming model was put forwards.
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